13 research outputs found

    Active microbial ecosystem in glacier basal ice fuelled by iron and silicate comminution‐derived hydrogen

    Get PDF
    The basal zone of glaciers is characterized by physicochemical properties that are distinct from firnified ice due to strong interactions with underlying substrate and bedrock. Basal ice (BI) ecology and the roles that the microbiota play in biogeochemical cycling, weathering, and proglacial soil formation remain poorly described. We report on basal ice geochemistry, bacterial diversity (16S rRNA gene phylogeny), and inferred ecological roles at three temperate Icelandic glaciers. We sampled three physically distinct basal ice facies (stratified, dispersed, and debris bands) and found facies dependent on biological similarities and differences; basal ice character is therefore an important sampling consideration in future studies. Based on a high abundance of silicates and Fe-containing minerals and, compared to earlier BI literature, total C was detected that could sustain the basal ice ecosystem. It was hypothesized that C-fixing chemolithotrophic bacteria, especially Fe-oxidisers and hydrogenotrophs, mutualistically support associated heterotrophic communities. Basal ice-derived rRNA gene sequences corresponding to genera known to harbor hydrogenotrophic methanogens suggest that silicate comminution-derived hydrogen can also be utilized for methanogenesis. PICRUSt-predicted metabolism suggests that methane metabolism and C-fixation pathways could be highly relevant in BI, indicating the importance of these metabolic routes. The nutrients and microbial communities release from melting basal ice may play an important role in promoting pioneering communities establishment and soil development in deglaciating forelands

    Dynamic model to predict the association between air quality, COVID-19 cases, and level of lockdown

    Get PDF
    Studies have reported significant reductions in air pollutant levels due to the COVID-19 outbreak worldwide due to global lockdowns. Nevertheless, all of the reports are limited compared to data from the same period over the past few years, providing mainly an overview of past events, with no future predictions. Lockdown level can be directly related to the number of new COVID-19 cases, air pollution, and economic restriction. As lockdown status varies considerably across the globe, there is a window for mega-cities to determine the optimum lockdown flexibility. To that end, firstly, we employed four different Artificial Neural Networks (ANN) to examine the compatibility to the original levels of CO, O3, NO2, NO, PM2.5, and PM10, for São Paulo City, the current Pandemic epicenter in South America. After checking compatibility, we simulated four hypothetical scenarios: 10%, 30%, 70%, and 90% lockdown to predict air pollution levels. To our knowledge, ANN have not been applied to air pollution prediction by lockdown level. Using a limited database, the Multilayer Perceptron neural network has proven to be robust (with Mean Absolute Percentage Error ∼ 30%), with acceptable predictive power to estimate air pollution changes. We illustrate that air pollutant levels can effectively be controlled and predicted when flexible lockdown measures are implemented. The models will be a useful tool for governments to manage the delicate balance among lockdown, number of COVID-19 cases, and air pollution

    The influence that different urban development models has on PM2.5 elemental and bioaccessible profiles

    Get PDF
    Limited studies have reported on in-vitro analysis of PM2.5 but as far as the authors are aware, bioaccessibility of PM2.5 in artificial lysosomal fluid (ALF) has not been linked to urban development models before. The Brazilian cities Manaus (Amazon) and Curitiba (South region) have different geographical locations, climates, and urban development strategies. Manaus drives its industrialization using the free trade zone policy and Curitiba adopted a services centered economy driven by sustainability. Therefore, these two cities were used to illustrate the influence that these different models have on PM2.5 in vitro profile. We compared PM2.5 mass concentrations and the average total elemental and bioaccessible profiles for Cu, Cr, Mn, and Pb. The total average elemental concentrations followed Mn > Pb > Cu > Cr in Manaus and Pb > Mn > Cu > Cr in Curitiba. Mn had the lowest solubility while Cu showed the highest bioaccessibility (100%) and was significantly higher in Curitiba than Manaus. Cr and Pb had higher bioaccessibility in Manaus than Curitiba. Despite similar mass concentrations, the public health risk in Manaus was higher than in Curitiba indicating that the free trade zone had a profound effect on the emission levels and sources of airborne PM. These findings illustrate the importance of adopting sustainable air quality strategies in urban planning

    The Society for Environmental Geochemistry and Health (SEGH): building for the future.

    Get PDF
    The challenges of sustainable development are ever more pressing, and the skills, interests and capabilities of the SEGH member are well-placed to continue to make more meaningful contributions to the environment, society and well-being. We reflect on the historical development of the society, its response to the dynamic international research landscape and the great opportunities ahead. In 2018, SEGH implemented a new board structure after 2–3 years of consultation, with approval of a new constitution and a new strategy across the large number of international board members. While regions were represented by sections in Europe, Asia/Pacific and the USA, the structure required renewal in order to be more representative of the distribution of members and website traffic that had evolved in preceding years. In addition, the society wanted to improve its position for future growth opportunities across rapidly developing regions

    Methods, fluxes and sources of gas phase alkyl nitrates in the coastal air

    Get PDF
    The daily and seasonal atmospheric concentrations, deposition fluxes and emission sources of a few C3-C9 gaseous alkyl nitrates (ANs) at the Belgian coast (De Haan) on the Southern North Sea were determined. An adapted sampler design for low- and high-volume air-sampling, optimized sample extraction and clean-up, as well as identification and quantification of ANs in air samples by means of gas chromatography mass spectrometry, are reported. The total concentrations of ANs ranged from 0.03 to 85 pptv and consisted primarily of the nitro-butane and nitro-pentane isomers. Air mass backward trajectories were calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to determine the influence of main air masses on AN levels in the air. The shorter chain ANs have been the most abundant in the Atlantic/Channel/UK air masses, while longer chain ANs prevailed in continental air. The overall mean N fluxes of the ANs were slightly higher for summer than those for winter-spring, although their contributions to the total nitrogen flux were low. High correlations between AN and HNO2 levels were observed during winter/spring. During summer, the shorter chain ANs correlated well with precipitation. Source apportionment by means of principal component analysis indicated that most of the gas phase ANs could be attributed to traffic/combustion, secondary photochemical formation and biomass burning, although marine sources may also have been present and a contributing factor. © 2014 Springer International Publishing Switzerland

    Health risks for a rural community in Bokkos, Plateau State, Nigeria, exposed to potentially toxic elements from an abandoned tin mine

    No full text
    The past mining activities in Bokkos Local Government Area (LGA) were performed in an uncontrolled way and gave rise to many abandoned ponds now serving as domestic and irrigation water sources. Past research focused mainly on the environmental impact, and we show for the first time what the human health risk through consumption of contaminated food crops is in these communities. This study was designed to determine the level of Potentially Toxic Elements (PTEs) contamination in pond water, soil, and food crops and assess the health risk of inhabitants in the abandoned tin mining community in Bokkos LGA. Samples of the mining pond water, soil, and selected food crops from farms irrigated with the pond water: bitter leaf (Vernonia amygdalina), pepper (Piper nigrum), okra (Albelmoschus esculentus), maize (Zea mays), sweet potato (Ipomoea batatas), and Irish potato (Solanum tuberosum) were analyzed for each of the eight PTEs (viz. Cu, Cr, Fe, Mn, Ni, Zn, Cd, and Pb) using inductively coupled plasma optical emission spectrometry (ICP-OES). The results obtained showed that the levels of all the PTEs analyzed in the soil, pond water, and selected food crops except for Fe and Mn in soil and Cd in sweet potato were greater than their corresponding background area values (p -3-10-1 which is several fold higher than the permissible limits (10-6 and -4) indicating the high carcinogenic risk. It can be concluded based on the results and risk assessment provided by this study that human exposure to mining pond water and soil in farms around the mining pond through the food chain suggests the high vulnerability of the local community to PTE toxicity. Long-term preventive measures to safeguard the health of the residents need to be put in place
    corecore