64 research outputs found

    Carriers of a novel frame-shift insertion in WNT16a possess elevated pancreatic expression of TCF7L2

    Get PDF
    BACKGROUND: The discovery of TCF7L2 as a global type 2 diabetes (T2D) gene has sparked investigations to explore the clinical utility of its variants for guiding the development of new diagnostic and therapeutic strategies. However, interpreting the resulting associations into function still remains unclear. Canonical Wnt signaling regulates β-catenin and its binding with TCF7L2, which in turn is critical for the production of glucagon-like peptide-1 (GLP-1). This study examines the role of a novel frame-shift insertion discovered in a conserved region of WNT16a, and it is proposed that this mutation affects T2D susceptibility in conjunction with gene variants in TCF7L2. RESULTS: Our results predicted that the insertion would convert the upstream open reading frame in the Wnt16a mRNA to an alternative, in-frame translation initiation site, resulting in the prevention of nonsense-mediated decay, leading to a consequent stabilization of the mutated WNT16a message. To examine the role of Wnt16a in the Wnt signaling pathway, DNA and serum samples from 2,034 individuals (48% with T2D) from the Sikh Diabetes Study were used in this investigation. Prevalence of Wnt16a insertion did not differ among T2D cases (33%) and controls (32%). However, there was a 3.2 fold increase in Wnt16a mRNA levels in pancreatic tissues from the insertion carriers and a significant increase (70%, p < 0.0001) in luciferase activity in the constructs carrying the insertion. The expression of TCF7L2 mRNA in pancreas was also elevated (~23-fold) among the insertion carriers (p=0.003). CONCLUSIONS: Our results suggest synergistic effects of WNT16a insertion and the at-risk ‘T’ allele of TCF7L2 (rs7903146) for elevating the expression of TCF7L2 in human pancreas which may affect the regulation of downstream target genes involved in the development of T2D through Wnt/β-catenin/TCF7L2 signaling pathway. However, further studies would be needed to mechanistically link the two definitively

    Variants in KCNQ1 increase type II diabetes susceptibility in South Asians: A study of 3,310 subjects from India and the US

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polymorphisms in intron 15 of potassium voltage-gated channel, KQT-like subfamily member 1 (<it>KCNQ1</it>) gene have been associated with type II diabetes (T2D) in Japanese genome-wide association studies (GWAS). More recently a meta-analysis of European GWAS has detected a new independent signal associated with T2D in intron 11 of the <it>KCNQ1 </it>gene. The purpose of this investigation is to examine the role of these variants with T2D in populations of Asian Indian descent from India and the US.</p> <p>Methods</p> <p>We examined the association between four variants in the <it>KCNQ1 </it>gene with T2D and related quantitative traits in a total of 3,310 Asian Indian participants from two different cohorts comprising 2,431 individuals of the Punjabi case-control cohort from the Sikh Diabetes Study and 879 migrant Asian Indians living in the US.</p> <p>Results</p> <p>Our data confirmed the association of a new signal at the <it>KCNQ1 </it>locus (rs231362) with T2D showing an allelic odds ratio (OR) of 1.24 95%CI [1.08-1.43], p = 0.002 in the Punjabi cohort. A moderate association with T2D was also seen for rs2237895 in the Punjabi (OR 1.14; p = 0.036) and combined cohorts (meta-analysis OR 1.14; p = 0.018). Three-site haplotype analysis of rs231362, rs2237892, rs2237895 exhibited considerably stronger evidence of association of the GCC haplotype with T2D showing OR of 1.24 95%CI [1.00-1.53], p = 0.001, permutation p = 8 × 10<sup>-4 </sup>in combined cohorts. The 'C' risk allele carriers of rs2237895 had significantly reduced measures of HOMA-B in the US cohort (p = 0.008) as well as in combined cohort in meta-analysis (p = 0.009).</p> <p>Conclusions</p> <p>Our investigation has confirmed that the variation within the <it>KCNQ1 </it>locus confers a significant risk to T2D among Asian Indians. Haplotype analysis further suggested that the T2D risk associated with <it>KCNQ1 </it>SNPs may be derived from 'G' allele of rs231362 and 'C' allele of rs2237895 and this appears to be mediated through β cell function.</p

    PhenX RISING: real world implementation and sharing of PhenX measures

    Get PDF
    Abstract Background The purpose of this manuscript is to describe the PhenX RISING network and the site experiences in the implementation of PhenX measures into ongoing population-based genomic studies. Methods Eighty PhenX measures were implemented across the seven PhenX RISING groups, thirty-three of which were used at more than two sites, allowing for cross-site collaboration. Each site used between four and 37 individual measures and five of the sites are validating the PhenX measures through comparison with other study measures. Self-administered and computer-based administration modes are being evaluated at several sites which required changes to the original PhenX Toolkit protocols. A network-wide data use agreement was developed to facilitate data sharing and collaboration. Results PhenX Toolkit measures have been collected for more than 17,000 participants across the PhenX RISING network. The process of implementation provided information that was used to improve the PhenX Toolkit. The Toolkit was revised to allow researchers to select self- or interviewer administration when creating the data collection worksheets and ranges of specimens necessary to run biological assays has been added to the Toolkit. Conclusions The PhenX RISING network has demonstrated that the PhenX Toolkit measures can be implemented successfully in ongoing genomic studies. The next step will be to conduct gene/environment studies

    A Replication Study of GWAS-Derived Lipid Genes in Asian Indians: The Chromosomal Region 11q23.3 Harbors Loci Contributing to Triglycerides

    Get PDF
    Recent genome-wide association scans (GWAS) and meta-analysis studies on European populations have identified many genes previously implicated in lipid regulation. Validation of these loci on different global populations is important in determining their clinical relevance, particularly for development of novel drug targets for treating and preventing diabetic dyslipidemia and coronary artery disease (CAD). In an attempt to replicate GWAS findings on a non-European sample, we examined the role of six of these loci (CELSR2-PSRC1-SORT1 rs599839; CDKN2A-2B rs1333049; BUD13-ZNF259 rs964184; ZNF259 rs12286037; CETP rs3764261; APOE-C1-C4-C2 rs4420638) in our Asian Indian cohort from the Sikh Diabetes Study (SDS) comprising 3,781 individuals (2,902 from Punjab and 879 from the US). Two of the six SNPs examined showed convincing replication in these populations of Asian Indian origin. Our study confirmed a strong association of CETP rs3764261 with high-density lipoprotein cholesterol (HDL-C) (p = 2.03×10−26). Our results also showed significant associations of two GWAS SNPs (rs964184 and rs12286037) from BUD13-ZNF259 near the APOA5-A4-C3-A1 genes with triglyceride (TG) levels in this Asian Indian cohort (rs964184: p = 1.74×10−17; rs12286037: p = 1.58×10−2). We further explored 45 SNPs in a ∼195 kb region within the chromosomal region 11q23.3 (encompassing the BUD13-ZNF259, APOA5-A4-C3-A1, and SIK3 genes) in 8,530 Asian Indians from the London Life Sciences Population (LOLIPOP) (UK) and SDS cohorts. Five more SNPs revealed significant associations with TG in both cohorts individually as well as in a joint meta-analysis. However, the strongest signal for TG remained with BUD13-ZNF259 (rs964184: p = 1.06×10−39). Future targeted deep sequencing and functional studies should enhance our understanding of the clinical relevance of these genes in dyslipidemia and hypertriglyceridemia (HTG) and, consequently, diabetes and CAD

    Genome-Wide Linkage Scan to Identify Loci Associated with Type 2 Diabetes and Blood Lipid Phenotypes in the Sikh Diabetes Study

    Get PDF
    In this investigation, we have carried out an autosomal genome-wide linkage analysis to map genes associated with type 2 diabetes (T2D) and five quantitative traits of blood lipids including total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein (VLDL) cholesterol, and triglycerides in a unique family-based cohort from the Sikh Diabetes Study (SDS). A total of 870 individuals (526 male/344 female) from 321 families were successfully genotyped using 398 polymorphic microsatellite markers with an average spacing of 9.26 cM on the autosomes. Results of non-parametric multipoint linkage analysis using Sall statistics (implemented in Merlin) did not reveal any chromosomal region to be significantly associated with T2D in this Sikh cohort. However, linkage analysis for lipid traits using QTL-ALL analysis revealed promising linkage signals with p≤0.005 for total cholesterol, LDL cholesterol, and HDL cholesterol at chromosomes 5p15, 9q21, 10p11, 10q21, and 22q13. The most significant signal (p = 0.0011) occurred at 10q21.2 for HDL cholesterol. We also observed linkage signals for total cholesterol at 22q13.32 (p = 0.0016) and 5p15.33 (p = 0.0031) and for LDL cholesterol at 10p11.23 (p = 0.0045). Interestingly, some of linkage regions identified in this Sikh population coincide with plausible candidate genes reported in recent genome-wide association and meta-analysis studies for lipid traits. Our study provides the first evidence of linkage for loci associated with quantitative lipid traits at four chromosomal regions in this Asian Indian population from Punjab. More detailed examination of these regions with more informative genotyping, sequencing, and functional studies should lead to rapid detection of novel targets of therapeutic importance

    Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent genome-wide association (GWA) studies have identified several unsuspected genes associated with type 2 diabetes (T2D) with previously unknown functions. In this investigation, we have examined the role of 9 most significant SNPs reported in GWA studies: [peroxisome proliferator-activated receptor gamma 2 (<it>PPARG2</it>; rs 1801282); insulin-like growth factor two binding protein 2 (<it>IGF2BP2</it>; rs 4402960); cyclin-dependent kinase 5, a regulatory subunit-associated protein1-like 1 (<it>CDK5</it>; rs7754840); a zinc transporter and member of solute carrier family 30 (<it>SLC30A8</it>; rs13266634); a variant found near cyclin-dependent kinase inhibitor 2A (<it>CDKN2A</it>; rs10811661); hematopoietically expressed homeobox (<it>HHEX</it>; rs 1111875); transcription factor-7-like 2 (<it>TCF7L2</it>; rs 10885409); potassium inwardly rectifying channel subfamily J member 11(<it>KCNJ11</it>; rs 5219); and fat mass obesity-associated gene (<it>FTO</it>; rs 9939609)].</p> <p>Methods</p> <p>We genotyped these SNPs in a case-control sample of 918 individuals consisting of 532 T2D cases and 386 normal glucose tolerant (NGT) subjects of an Asian Sikh community from North India. We tested the association between T2D and each SNP using unconditional logistic regression before and after adjusting for age, gender, and other covariates. We also examined the impact of these variants on body mass index (BMI), waist to hip ratio (WHR), fasting insulin, and glucose and lipid levels using multiple linear regression analysis.</p> <p>Results</p> <p>Four of the nine SNPs revealed a significant association with T2D; <it>PPARG2 </it>(Pro12Ala) [odds ratio (OR) 0.12; 95% confidence interval (CI) (0.03–0.52); p = 0.005], <it>IGF2BP2 </it>[OR 1.37; 95% CI (1.04–1.82); p = 0.027], <it>TCF7L2 </it>[OR 1.64; 95% CI (1.20–2.24); p = 0.001] and <it>FTO </it>[OR 1.46; 95% CI (1.11–1.93); p = 0.007] after adjusting for age, sex and BMI. Multiple linear regression analysis revealed significant association of two of nine investigated loci with diabetes-related quantitative traits. The 'C' (risk) allele of <it>CDK5 </it>(rs 7754840) was significantly associated with decreased HDL-cholesterol levels in both NGT (p = 0.005) and combined (NGT and T2D) (0.005) groups. The less common 'C' (risk) allele of <it>TCF7L2 </it>(rs 10885409) was associated with increased LDL-cholesterol (p = 0.010) in NGT and total and LDL-cholesterol levels (p = 0.008; p = 0.003, respectively) in combined cohort.</p> <p>Conclusion</p> <p>To our knowledge, this is first study reporting the role of some recently emerged loci with T2D in a high risk population of Asian Indian origin. Further investigations are warranted to understand the pathway-based functional implications of these important loci in T2D pathophysiology in different ethnicities.</p

    A Bidirectional Mendelian Randomization Study to evaluate the causal role of reduced blood vitamin D levels with type 2 diabetes risk in South Asians and Europeans.

    Get PDF
    Context Multiple observational studies have reported an inverse relationship between 25-hydroxyvitamin D concentrations (25(OH)D) and type 2 diabetes (T2D). However, the results of short- and long-term interventional trials concerning the relationship between 25(OH)D and T2D risk have been inconsistent. Objectives and methods To evaluate the causal role of reduced blood 25(OH)D in T2D, here we have performed a bidirectional Mendelian randomization study using 59,890 individuals (5,862 T2D cases and 54,028 controls) from European and Asian Indian ancestries. We used six known SNPs, including three T2D SNPs and three vitamin D pathway SNPs, as a genetic instrument to evaluate the causality and direction of the association between T2D and circulating 25(OH)D concentration. Results Results of the combined meta-analysis of eight participating studies showed that a composite score of three T2D SNPs would significantly increase T2D risk by an odds ratio (OR) of 1.24, p = 1.82 × 10–32; Z score 11.86, which, however, had no significant association with 25(OH)D status (Beta -0.02nmol/L ± SE 0.01nmol/L; p = 0.83; Z score -0.21). Likewise, the genetically instrumented composite score of 25(OH)D lowering alleles significantly decreased 25(OH)D concentrations (-2.1nmol/L ± SE 0.1nmol/L, p = 7.92 × 10–78; Z score -18.68) but was not associated with increased risk for T2D (OR 1.00, p = 0.12; Z score 1.54). However, using 25(OH)D synthesis SNP (DHCR7; rs12785878) as an individual genetic instrument, a per allele reduction of 25(OH)D concentration (-4.2nmol/L ± SE 0.3nmol/L) was predicted to increase T2D risk by 5%, p = 0.004; Z score 2.84. This effect, however, was not seen in other 25(OH)D SNPs (GC rs2282679, CYP2R1 rs12794714) when used as an individual instrument. Conclusion Our new data on this bidirectional Mendelian randomization study suggests that genetically instrumented T2D risk does not cause changes in 25(OH)D levels. However, genetically regulated 25(OH)D deficiency due to vitamin D synthesis gene (DHCR7) may influence the risk of T2D

    Genome-wide association study identifies a novel locus contributing to type 2 diabetes susceptibility in Sikhs of Punjabi origin from India.

    Get PDF
    We performed a genome-wide association study (GWAS) and a multistage meta-analysis of type 2 diabetes (T2D) in Punjabi Sikhs from India. Our discovery GWAS in 1,616 individuals (842 case subjects) was followed by in silico replication of the top 513 independent single nucleotide polymorphisms (SNPs) (P < 10⁻³) in Punjabi Sikhs (n = 2,819; 801 case subjects). We further replicated 66 SNPs (P < 10⁻⁴) through genotyping in a Punjabi Sikh sample (n = 2,894; 1,711 case subjects). On combined meta-analysis in Sikh populations (n = 7,329; 3,354 case subjects), we identified a novel locus in association with T2D at 13q12 represented by a directly genotyped intronic SNP (rs9552911, P = 1.82 × 10⁻⁸) in the SGCG gene. Next, we undertook in silico replication (stage 2b) of the top 513 signals (P < 10⁻³) in 29,157 non-Sikh South Asians (10,971 case subjects) and de novo genotyping of up to 31 top signals (P < 10⁻⁴) in 10,817 South Asians (5,157 case subjects) (stage 3b). In combined South Asian meta-analysis, we observed six suggestive associations (P < 10⁻⁵ to < 10⁻⁷), including SNPs at HMG1L1/CTCFL, PLXNA4, SCAP, and chr5p11. Further evaluation of 31 top SNPs in 33,707 East Asians (16,746 case subjects) (stage 3c) and 47,117 Europeans (8,130 case subjects) (stage 3d), and joint meta-analysis of 128,127 individuals (44,358 case subjects) from 27 multiethnic studies, did not reveal any additional loci nor was there any evidence of replication for the new variant. Our findings provide new evidence on the presence of a population-specific signal in relation to T2D, which may provide additional insights into T2D pathogenesis

    Investigation of Genetic Variation Underlying Central Obesity amongst South Asians

    Get PDF
    The LOLIPOP study is supported by the National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre Imperial College Healthcare NHS Trust, the British Heart Foundation (SP/04/002), the Medical Research Council (G0601966,G0700931), the Wellcome Trust (084723/Z/08/Z), and the NIHR (RP-PG-0407-10371). The work was carried out in part at the NIHR/Wellcome Trust Imperial Clinical Research Facility. The Sikh Diabetes Study is supported by National Institute of Health grants KO1TW006087, funded by the Fogarty International Center, R01DK082766, funded by National Institute of Diabetes and Digestive and Kidney Diseases, and a seed grant from University of Oklahoma Health Sciences Center, Oklahoma City, USA. The Mauritius Family Study is supported by the Mauritius Ministry of Health and Quality of Life, Australian Government National Health and Medical Research Council NHMRC project grant numbers 1020285 and 1037916, the Victorian Government’s OIS Program, and partly funded by US National Institutes of Health Grant DK-25446. We thank the participants and research staff who made the study possible.South Asians are 1/4 of the world’s population and have increased susceptibility to central obesity and related cardiometabolic disease. Knowledge of genetic variants affecting risk of central obesity is largely based on genome-wide association studies of common SNPs in Europeans. To evaluate the contribution of DNA sequence variation to the higher levels of central obesity (defined as waist hip ratio adjusted for body mass index, WHR) among South Asians compared to Europeans we carried out: i) a genome-wide association analysis of >6M genetic variants in 10,318 South Asians with focused analysis of population-specific SNPs; ii) an exome-wide association analysis of ~250K SNPs in protein-coding regions in 2,637 South Asians; iii) a comparison of risk allele frequencies and effect sizes of 48 known WHR SNPs in 12,240 South Asians compared to Europeans. In genome-wide analyses, we found no novel associations between common genetic variants and WHR in South Asians at P<5x10-8; variants showing equivocal association with WHR (P<1x10-5) did not replicate at P<0.05 in an independent cohort of South Asians (N = 1,922) or in published, predominantly European meta-analysis data. In the targeted analyses of 122,391 population-specific SNPs we also found no associations with WHR in South Asians at P<0.05 after multiple testing correction. Exome-wide analyses showed no new associations between genetic variants and WHR in South Asians, either individually at P<1.5x10-6 or grouped by gene locus at P<2.5x10−6. At known WHR loci, risk allele frequencies were not higher in South Asians compared to Europeans (P = 0.77), while effect sizes were unexpectedly smaller in South Asians than Europeans (P<5.0x10-8). Our findings argue against an important contribution for population-specific or cosmopolitan genetic variants underlying the increased risk of central obesity in South Asians compared to Europeans.Yeshttp://www.plosone.org/static/editorial#pee

    Association of the PHACTR1/EDN1 genetic locus with spontaneous coronary artery dissection

    Get PDF
    Background: Spontaneous coronary artery dissection (SCAD) is an increasingly recognized cause of acute coronary syndromes (ACS) afflicting predominantly younger to middle-aged women. Observational studies have reported a high prevalence of extracoronary vascular anomalies, especially fibromuscular dysplasia (FMD) and a low prevalence of coincidental cases of atherosclerosis. PHACTR1/EDN1 is a genetic risk locus for several vascular diseases, including FMD and coronary artery disease, with the putative causal noncoding variant at the rs9349379 locus acting as a potential enhancer for the endothelin-1 (EDN1) gene. Objectives: This study sought to test the association between the rs9349379 genotype and SCAD. Methods: Results from case control studies from France, United Kingdom, United States, and Australia were analyzed to test the association with SCAD risk, including age at first event, pregnancy-associated SCAD (P-SCAD), and recurrent SCAD. Results: The previously reported risk allele for FMD (rs9349379-A) was associated with a higher risk of SCAD in all studies. In a meta-analysis of 1,055 SCAD patients and 7,190 controls, the odds ratio (OR) was 1.67 (95% confidence interval [CI]: 1.50 to 1.86) per copy of rs9349379-A. In a subset of 491 SCAD patients, the OR estimate was found to be higher for the association with SCAD in patients without FMD (OR: 1.89; 95% CI: 1.53 to 2.33) than in SCAD cases with FMD (OR: 1.60; 95% CI: 1.28 to 1.99). There was no effect of genotype on age at first event, P-SCAD, or recurrence. Conclusions: The first genetic risk factor for SCAD was identified in the largest study conducted to date for this condition. This genetic link may contribute to the clinical overlap between SCAD and FMD
    corecore