162 research outputs found
Generalized Spatial Regression with Differential Regularization
We aim at analyzing geostatistical and areal data observed over irregularly
shaped spatial domains and having a distribution within the exponential family.
We propose a generalized additive model that allows to account for
spatially-varying covariate information. The model is fitted by maximizing a
penalized log-likelihood function, with a roughness penalty term that involves
a differential quantity of the spatial field, computed over the domain of
interest. Efficient estimation of the spatial field is achieved resorting to
the finite element method, which provides a basis for piecewise polynomial
surfaces. The proposed model is illustrated by an application to the study of
criminality in the city of Portland, Oregon, USA
IGS: an IsoGeometric approach for Smoothing on surfaces
We propose an Isogeometric approach for smoothing on surfaces, namely
estimating a function starting from noisy and discrete measurements. More
precisely, we aim at estimating functions lying on a surface represented by
NURBS, which are geometrical representations commonly used in industrial
applications. The estimation is based on the minimization of a penalized
least-square functional. The latter is equivalent to solve a 4th-order Partial
Differential Equation (PDE). In this context, we use Isogeometric Analysis
(IGA) for the numerical approximation of such surface PDE, leading to an
IsoGeometric Smoothing (IGS) method for fitting data spatially distributed on a
surface. Indeed, IGA facilitates encapsulating the exact geometrical
representation of the surface in the analysis and also allows the use of at
least globally continuous NURBS basis functions for which the 4th-order
PDE can be solved using the standard Galerkin method. We show the performance
of the proposed IGS method by means of numerical simulations and we apply it to
the estimation of the pressure coefficient, and associated aerodynamic force on
a winglet of the SOAR space shuttle
Spatial regression models over two-dimensional manifolds
We propose a regression model for data spatially distributed over general two-dimensional Riemannian manifolds. This is a generalized additive model with a roughness penalty term involving a differential operator computed over the non-planar domain. By virtue of a semiparametric framework, the model allows inclusion of space-varying covariate information. Estimation can be performed by conformally parameterizing the non-planar domain and then generalizing existing models for penalized spatial regression over planar domains. The conformal coordinates and the estimation problem are both computed with a finite element approach
Analyzing data in complicated 3D domains: Smoothing, semiparametric regression, and functional principal component analysis
In this work, we introduce a family of methods for the analysis of data observed at locations scattered in three-dimensional (3D) domains, with possibly complicated shapes. The proposed family of methods includes smoothing, regression, and functional principal component analysis for functional signals defined over (possibly nonconvex) 3D domains, appropriately complying with the nontrivial shape of the domain. This constitutes an important advance with respect to the literature, because the available methods to analyze data observed in 3D domains rely on Euclidean distances, which are inappropriate when the shape of the domain influences the phenomenon under study. The common building block of the proposed methods is a nonparametric regression model with differential regularization. We derive the asymptotic properties of the methods and show, through simulation studies, that they are superior to the available alternatives for the analysis of data in 3D domains, even when considering domains with simple shapes. We finally illustrate an application to a neurosciences study, with neuroimaging signals from functional magnetic resonance imaging, measuring neural activity in the gray matter, a nonconvex volume with a highly complicated structure
- …