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7. PROOF OF PROPOSITION 1 10

For the proof of Proposition 1, we need the following characterization theorem from Chapter
2 of Braess (2007).

Lemma. Let A be a symmetric coercive bilinear form on a vector space V and B a linear form
on V. Then, there exists in V a minimizer ζ of the form A(y, y)− 2B(y), for y ∈ V, if and only
if A(ζ, y) = B(y), for any y ∈ V. Moreover, the minimizer ζ is unique. � 15

Now, we write the functional in (5) as

JΩ,λ(f ◦X) = zT z − 2fTNz + fTN fN + λ

∫
Ω

1

D

[
div
{
K∇(f ◦X)

}]2
dΩ.

Since we are solving the optimization problem with respect to f ◦X, we can ignore the terms
that are constant with respect to f ◦X and look for a solution f ◦X ∈ H2

n0,K(Ω) that minimizes

J̃Ω,λ(f ◦X) =

(
fTN fN + λ

∫
Ω

1

D

[
div
{
K∇(f ◦X)

}]2
dΩ

)
− 2fTNz.

To minimize J̃Ω,λ(f ◦X), we apply Lemma 1 with

A(f ◦X, y ◦X) = yTN fN + λ

∫
Ω

1

D
div
{
K∇(f ◦X)

}
div
{
K∇(y ◦X)

}
dΩ,

B(y) = yTNz, and V = H2
n0,K(Ω). To show that the bilinear form A is coercive, we sup- 20

pose that A(f ◦X, f ◦X) = 0 for some f ◦X ∈ H2
n0,K(Ω). Then, we have fTN fN = 0 and∫

ΩD−1[div
{
K∇(f ◦X)

}
]2dΩ = 0, where D is positive and the matrix K is positive definite.

The boundary conditions imposed on the co-normal derivatives in H2
n0,K(Ω) force f ◦X to be

a constant on Ω. Moreover, the condition fTN fN = 0 implies that f ◦X is the constant null func-
tion on Ω. Thus A is coercive on H2

n0,K(Ω) and via Lemma 1, the function f̂ ◦X is the unique 25

minimizer of (5) in H2
n0,K(Ω) if and only if f̂ ◦X satisfies (8).
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8. WEAK FORMULATION OF THE ESTIMATION PROBLEM

To obtain an equivalent formulation for (8) suited for a finite element approximation, we intro-
duce an auxiliary function g defined on Γ. Then, the problem of finding f̂ defined on Γ such that
f̂ ◦X ∈ H2

n0,K(Ω) satisfies (8) for any q on Γ where q ◦X ∈ H2
n0,K(Ω), can be rewritten as the30

problem of finding a pair of functions f̂ and g such that (f̂ ◦X, g ◦X) ∈ H2
n0,K(Ω)× L2(Ω)

and satisfies

qTn f̂n + λ

∫
Ω
(g ◦X) div

{
K∇(q ◦X)

}
dΩ = qTnz∫

Ω
(g ◦X)(ζ ◦X)DdΩ−

∫
Ω

div
{
K∇(f̂ ◦X)

}
(ζ ◦X)dΩ = 0

(22)

for any (q ◦X, ζ ◦X) ∈ H2
n0,K(Ω)× L2(Ω). If the pair (f̂ ◦X, g ◦X) ∈ H2

n0,K(Ω)× L2(Ω)

satisfies (22) for any (q ◦X, ζ ◦X) ∈ H2
n0,K(Ω)× L2(Ω), then f̂ ◦X also satisfies (8). Of

course, if f̂ ◦X satisfies (8), then the pair [f̂ ◦X, div{K∇(f ◦X)}] satisfies (22). Now, we35

ask for higher regularity of the auxiliary function g and the test function ζ, i.e., g ◦X, ζ ◦X ∈
H1(Ω). With the added regularity and by exploiting Green’s Theorem, problem (22) can be re-
formulated as finding (f̂ ◦X, g ◦X) ∈ {H1

n0,K(Ω) ∩ C0(Ω̄)} ×H1(Ω) such that (12) is veri-
fied for any (q ◦X, ζ ◦X) ∈ {H1

n0,K(Ω) ∩ C0(Ω̄)} ×H1(Ω). Moreover, the elliptic regularity
property ensures that f̂ ◦X still belongs to H2

n0(Ω) (see, e.g., Lions & Magenes, 1973, Chapter40

8).

9. COMPUTATIONAL ALGORITHM FOR THE FLATTENING MAP

We approximate the conformal coordinates u[1] and u[2] in (9)-(10) in the space H1
T (Γ),

i.e., with functions that are globally continuous and linear over each triangle of ΓT . Care must
be used in the choice of the three-dimensional mesh ΓT , because degenerate triangles can be45

generated by flattening a triangle with all the vertices on the boundary. Below, we outline the
finite element procedure adopted to approximate the flattening map.

1. An approximation of u[1] is found by minimizing E(u[1]) in (11) over H1
T (Γ). The energy

functional is invariant with respect to conformal changes of the domain metric (see, e.g.50

Pinkall & Polthier, 1993). This fact yields a convenient cotangent formula for the stiffness
matrix D. In particular, the entries of D are computed by gathering terms associated with the
same edge. Specifically, if xj and xl are connected by an edge of the triangular mesh ΓT , then
Djl = −1

2 (cotαj + cotβj) where αj and βj are the angles opposite to the edge identified
by xl and xj . If xj and xl are not connected by an edge, then Djl = 0. The diagonal entries of55

D are such that Djj = −
∑

l ̸=j Djl. For the boundary conditions stated in (9), each interior
vertex xj ∈ ΓT satisfies ∑

xl∈ΓT

Djlu1l = −
∑
xl∈b1

Djl. (23)

Solving the system above approximates the conformal parameter u[1].
2. Cut ΓT following the gradient of u[1]. The maximum principle ensures that the solution to

a Laplace equation reaches its maximum on the boundary (Lions & Magenes, 1973). This60

implies that there always exists a vertex adjacent to the current vertex with a larger value. We
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use this fact to find the cut C on the surface. Start by picking a vertex on b0 to be the starting
point, call it ϱ0. Search the adjacent vertices and move to the vertex with a larger value of u[1].
Continue to search the vertices adjacent to current vertex driven by the same criterion, i.e.,
always moving to the near vertex with a larger value of u[1]. Once a vertex on b1 is reached, 65

then the cut is completed.
3. Create the oriented boundary B. Let B start from the vertex ϱ0 identified in the previous

step. Then, let B run from ϱ0 around b0 back to ϱ0, and then up the cut C and around b1 and
back down C in the opposite direction back to ϱ0 creating a closed curve. Notice that B must
run around b0 and b1 in a way that preserves the orientation of the surface. See Figure 2, top 70

center. Moreover, the vertices along C need to be repeated twice since they will end up on
opposite sides of the rectangle.

4. Generate the boundary values for u[2] in (10) by integrating u[1] along B, as u[2](ϱ) =∫ ϱ
ϱ0

∂u[1]

∂ν ds, where ds is the arc-length element along B. Since u[1] is harmonic, the diver-

gence theorem yields
∮
B

∂u[1]

∂ν ds = 0, where
∮
B is the line integral over the closed boundary 75

B. The cut C follows the gradient of u[1], thus
∂u[1]

∂ν = 0 along C. Hence, u[2] is constant
along C. Note that the height of the cylinder must be scaled properly. The height of the cylin-
der becomes the width of the rectangle which is forced to have length equal to one. Hence the
height of the rectangle will be the circumference of the cylinder divided by the height of the
cylinder. If the proportions of the rectangle are not scaled properly, then the map will not be 80

conformal.
5. Set up and solve the system for u[2] as in Step 1., adjusting the right-hand side of (23) to take

into account the boundary values for u[2] in (10).

10. ASYMPTOTIC PROPERTIES OF THE ESTIMATORS

The following results quantify the bias of the estimators that is induced by the roughness 85

penalty.

PROPOSITION 5. Let f be the true function in model (1), X be the map in (3) and f̂ ◦X be
the estimator satisfying (8). Then the following inequality holds:∣∣∣∣E(f̂ ◦X)− f ◦X

∣∣∣∣2
JΩ

≤ 4λ
∣∣∣∣D(u)−1/2div

[
K(u)∇f{X(u)}

]∣∣∣∣2
L2(Ω)

where || · ||JΩ denotes the norm on H2(Ω) induced by the functional JΩ,λ in (5), i.e.

||h ◦X||2JΩ =

n∑
i=1

[
h{X(ui)}

]2
+ λ

∫
Ω

(
D(u)−1/2div

[
K(u)∇h{X(u)}

])2
dΩ

and || · ||L2(Ω) is the standard L2 norm over Ω. 90

This result follows from Lemma 1 in Azzimonti et al. (2014a), which considers the simpler
case of the estimators defined over planar domains, owing to the regularity of the map X . Ex-
ploiting the inverse map X−1, it is then possible to derive the following analogous result directly
for the estimator f̂ defined over the manifold domain Γ.

COROLLARY 1. Let f be the true function in model (1) and let f̂ be the minimizer of (2). Then 95

the following inequality holds:∣∣∣∣E(f̂)− f
∣∣∣∣2
JΓ

≤ 4λ
∣∣∣∣∆Γf

∣∣∣∣2
L2(Γ)
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where || · ||JΓ is the norm on H2(Γ) induced by the functional JΓ,λ in (2), i.e.

||h||2JΓ =

n∑
i=1

{
h(xi)

}2
+ λ

∫
Γ
{∆Γf(x)}2 dΓ

and || · ||L2(Γ) is the L2 norm over Γ.

These results state that the estimators are asymptotically unbiased, in the norm induced by the
estimation functional, either if the true unknown function f is such that it annihilates the penalty100

term, or if λ → 0 for n → +∞. Letting λ decrease with n appears natural, since having more
observations decreases the need to impose a regularization.

Convergence to zero of the bias due to the discretization follows from Theorem 3 in Azzimonti
et al. (2014b) for the estimators in the planar domain, combined with classical convergence
results for a finite element discretization (Quarteroni, 2014) to guarantee the convergence of the105

approximated conformal map to the exact one.
A more complex issue, and still an open problem, concerns the convergence of the variance

term. This topic is studied in the classical setting of smoothing splines (see, e.g., Cox, 1983;
Heckman, 1986), thin-plate splines, or multidimensional smoothing splines (see, e.g., Cox, 1984;
Györfi et al., 2002; Cucker & Zhou, 2007, and references therein), that show consistency of these110

estimators when the smoothing parameter λ goes to zero with a proper rate with respect to n.
Unfortunately these results cannot be directly extended to our setting and a different approach
needs to be developed to show the consistency of our models. We are currently trying to prove
this result, looking for the appropriate rate of decrease of λ with respect to n that makes the
variance vanish, starting with the simpler planar setting considered in Sangalli et al. (2013);115

Azzimonti et al. (2014a,b). Finally, Section 11·2 reports a simulation study in support of the
pointwise asymptotic normality of f̂ and the asymptotic normality of β̂.

11. SIMULATION STUDIES

11·1. Comparison with a volume smoother
We extend the comparative study in Section 5 to a method that is not constrained to the mani-120

fold domain, but works in the full volume embedding the manifold. In particular, we consider a
tensor product of univariate cubic smoothing splines, with penalization of the L2-norms of the
second order derivatives. This method is implemented via the R package mgcv (Wood, 2006).
The smoothing parameter is selected at each simulation replicate and for each domain by gener-
alized cross validation.125

With respect to Figure 5, Figure 6 includes the additional box plots of the mean square errors
over the fifty simulation replicates for this technique, compared to the methods already consid-
ered in Section 5. Smoothing with respect to the three space coordinates, regardless of the domain
of the data, leads to good results only for Geometry 2, that has large portions approximately par-
allel to the planes formed by the main axes. This method performs instead very poorly for the130

other geometries. With this tensor product technique it is also possible to use different smooth-
ing parameters in the three dimensions, thus allowing for anisotropy in the direction of the three
coordinate axes. This leads to an improvement of the estimates for Geometry 1, whose centerline
is linear and parallel to one of the main axes, but does not yield any appreciable improvement
for Geometry 3 and 4.135

These results illustrate that a volume smoother does not efficiently handle data spatially distri-
buted over bidimensional manifolds.



Spatial regression models over two-dimensional manifolds 5

A B C D

0.
0

0.
2

0.
4

0.
6

0.
8

 Geometry 1
M

ea
n 

S
qu

ar
e 

E
rr

or

A B C D

0.
0

0.
2

0.
4

0.
6

 Geometry 2

A B C D

0.
0

0.
2

0.
4

0.
6

0.
8

 Geometry 3

A B C D

0.
0

0.
2

0.
4

0.
6

 Geometry 4

Fig. 6. Box plots of the mean square errors for the four estimators over fifty simulations. A: spatial regression over non-planar
domains; B: spatial regression over planar domains, combined with cylindrical flattening; C: iterative heat kernel smoothing; D:

tensor product of univariate smoothing splines.

11·2. Simulation study with covariates
We briefly show a simulation study where neither of the competitor models considered in

Section 5, namely the planar spatial regression method with the cylindrical flattening and the 140

Iterative Heat Kernel smoothing, can be implemented. The simulation uses the real inner carotid
artery geometry in Figure 1 (b), also considered in Section 6, and includes space-varying co-
variates. As mentioned in the Introduction, for the carotid artery application, it is in fact of great
interest to account for covariates concerning the local morphology of the artery. In this case, the
planar spatial regression method with the cylindrical flattening cannot be implemented as the 145

cylindrical map cannot handle the large aneurysmal sac, while Iterative Heat Kernel smoothing
cannot be implemented as it is not currently designed to account for space-varying covariates.

We generate fifty test functions of the same form as (21) and consider two covariates; the
local curvature c of the vessel wall, as computed in Section 6, and another covariate w that
is randomly generated from a N(0.5, 1) distribution. We create noisy data values at each data 150

location xi via zi = 0.5wi + 0.2ci + f(xi) + (1/3)ϵi where the errors ϵi are independent with
distribution t-student with five degrees of freedom. Across the fifty simulation repetitions, we
obtain a median β̂1 = 0.5020 with an IQR of 0.0107, and a median β̂2 = 0.2004 with an IQR of
0.0095, thus illustrating that the proposed technique efficiently handles space-varying covariates.
The distribution of β̂ is well approximated by a Gaussian distribution, as verified by Shapiro- 155

Wilk normality test (with p-value of 0.28 for the test on β̂, and p-values of 0.30 and 0.76 for
the tests on β̂1 and β̂2 respectively). The same can be said for the pointwise evaluations of f̂
(if performing a Shapiro-Wilk normality test at each of the 4089 data locations xi, then 94%
of the p-values are larger than 0.05; all of the p-values are larger than 0.29 when corrected
by false discovery rate). This simulation supports the asymptotic Gaussianity of the estimators, 160

that can be used to construct approximate confidence intervals for β and pointwise approximate
confidence bands for f. For the first simulation replicate, we obtain for instance an approximate
95% confidence interval of (0.495, 0.521) for β1 and an approximate 95% confidence interval of
(0.195, 0.201) for β2.
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