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Abstract: We analyze the spike train data by means of the k-mean align-
ment algorithm in a double perspective: data as non periodic and data as
periodic. In the first analysis, we show that alignment is not needed to
identify paths. Indeed, without allowing for warping, we detect four clus-
ters strongly associated to the four possible paths. In the second analysis,
by exploiting the circular nature of data and allowing for shifts, we detect
two clusters distinguishing between spike trains presenting higher or lower
neuronal activity during the bottom-left/bottom-right movement respec-
tively. In this latter case, the alignment procedure is able to match the four
movements across paths.
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1. Introduction

We here analyze the spike train data presented in Wu, Hatsopoulos and Srivas-
tava (2014) with the aim of detecting spike trains associated to different paths
or movements. This manuscript is divided in two sections: in the first one we
analyze the 240 spike trains as functions defined on a common domain along
the real axis (i.e., the interval [0,5]); in the second section, given the circularity
of the four possible paths, we analyze the 240 spike trains as periodic functions.
All analyses have been performed using the fdakma R package downloadable
from CRAN (Parodi et al. (2014)).

2. Non-periodic data analysis

To look for clusters among spike trains we applied the k-mean alignment al-
gorithm, detailed in Sangalli et al. (2010) and summarized in Sangalli, Secchi
and Vantini (2014), to the 240 spike trains. Since a null value of intensity in a
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Fig 1. Performance of the k-mean alignment algorithm when data are not assumed as pe-

riodic. The plot shows the mean similarity obtained with different values of k and different

classes of warping functions.

spike train means no neuronal activity, we used a similarity index that consid-
ered vertical shifts of the function as informative of a higher or lower neuronal
activity. Therefore, we shall use the following similarity index:

ρ(fi, fj) =

∫

fi(t)fj(t)dt
√

∫

fi(t)2dt
√

∫

fj(t)2dt
. (2.1)

Note that this similarity index assigns similarity equal to 1 (its maximal value)
to couples of curves that differ only for a positive multiplying factor:

ρ(fi, fj) = 1 ⇔ ∃a ∈ R
+ : fi(t) = afj(t). (2.2)

We performed the k-mean alignment algorithm allowing for affine warping func-
tions, being the group of affinity the maximal group compatible with the index.
We tested also the subgroups of shifts, dilations, and the degenerative identity
subgroup:

Haffine = {h : h(t) = mt+ q with m ∈ R
+, q ∈ R},

Hshift = {h : h(t) = t+ q with q ∈ R},

Hdilation = {h : h(t) = mt with m ∈ R
+},

Hidentity = {h : h(t) = t}.

Figure 1 shows the results of the k-mean alignment algorithm applied with
different choices for the number k of clusters and the group H of warping func-
tions. For each couple (k,H) the mean similarity between the aligned curves
and their respective templates is reported. The first dot on the left represents
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Fig 2. Clusters and templates identified by setting k = 4 and the group of warping functions

equal to Hidentity when data are not assumed as periodic. Each panel refer to a different

cluster. Spike trains are colored according to their respective path. Templates are black colored.

the mean similarity between the unaligned curves and their mean which acts as
a lower bound for the algorithm performance. The mean similarities achieved
by using Haffine, Hshift, Hdilation, and Hidentity are reported in orange, blue,
green, and black, respectively. Note that, as already pointed out in Sangalli
et al. (2010) and in Sangalli, Secchi and Vantini (2014), running the k-mean
alignment without allowing for warping (i.e, choosing Hidentity) is equivalent to
perform a simple functional k-mean clustering, while setting k = 1 is equivalent
to perform a simple continuous alignment with just one template. As described
in Sangalli et al. (2010) and in Sangalli, Secchi and Vantini (2014), being the
curves not defined on the entire real axis, the integrals in (2.2) are computed
over the intersection of the domains of fi and fj , and the cluster templates are
estimated by means of local polynomial regression.

The similar values and patterns of the four curves suggest the absence of
phase variability. The low mean similarities achieved are instead evidence of an
important residual amplitude variability in the data set that is not captured by
the templates. All four curves present an elbow for k = 4 suggesting the presence
of four clusters. In Figure 2 the four clusters obtained when no warping is allowed
are reported. Almost the same clusters are obtained if groups Haffine, Hshift, or
Hdilation are used instead. The four clusters turn out to be strongly associated
to paths. In the left table of Figure 3 we classify indeed the 240 spike trains
according to both clusters and paths showing a 92.5% agreement between the
two classifications. This analysis shows that to assign each spike train to the
correct path no alignment is needed. If the target of the analysis were instead
to detect the four movements in each spike train, alignment would be of course
needed. This latter issue is explored in the next section.
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Fig 3. The left panel displays the confusion matrix between paths and clusters identified by

setting k = 4 and the group of warping functions equal to Hidentity when data are not assumed

as periodic. The right panel displays the confusion matrix between paths and clusters identified

by setting k = 2 and the group of warping functions equal to Hshift when data are assumed

as periodic.

3. Periodic data analysis

Since the trajectories of the monkey right hand should be ideally close curves,
always the same across paths, and with just the starting points differing across
paths, we here analyze the 240 spike trains as periodic functions and apply the
k-mean alignment with a similarity measure similar to that used in the previous
section:

ρ(fi, fj) =

∫ 5

0
fi(s)fj(s)ds

√

∫ 5

0
fi(s)2ds

√

∫ 5

0
fj(s)2ds

. (3.1)

The only difference is that integrals are not defined over the real axis but just on
a single period (i.e., [0,5]) and that the functions are here assumed to be periodic.
Then we tested Hshift and Hidentity as possible groups of warping functions
being dilations non-coherent with the similarity measure in the case of periodic
function. From an algorithmic point of view, the only difference, with respect to
the analysis presented in the previous section, is that the similarity between the
template and the candidate warped functions is not computed on the common
domain but always on the interval [0,5]. Indeed, being the functions periodic,
what exceeds one interval extreme is considered at the other interval extreme.

In Figure 4 the mean similarities between the aligned curves and their relative
templates are reported as functions of k (i.e., the number of clusters). The plot
clearly suggests the use of shifts and two templates to align and cluster data.
Thus we chose to set k = 2 and the group of warping functions equal to Hshift.

In Figure 5 the two obtained clusters are reported. The first cluster (left
panel) is made of 181 spike trains presenting a symmetric activity pattern around
the higher activity peak. The second cluster (right panel) is instead made of 59
left-skewed spike trains characterized by a certain rate of activity also before
the higher activity peak. This classification, as shown by the confusion matrix
reported in the right panel of Figure 3, is not simply related to paths and thus
it is worth further investigation in a biological perspective.



An application of k-mean alignment 1773

Fig 4. Performance of the k-mean alignment algorithm when data are assumed periodic. The

left panel shows the mean similarity obtained with different values of k and different classes

of warping functions.

Fig 5. Clusters and templates identified by setting k = 2 and the group of warping functions

equal to Hshift when data are assumed periodic. Each panel refer to a different cluster. Spike

trains are colored according to their respective path. Templates are black colored.

On the contrary, the warping functions (i.e., shifts) result to be strongly
associated to paths. Indeed, to effectively visualize the warping performed by
the k-mean alignment algorithm on the 240 periodic curves, in Figure 6, we
report, separately for each path, the 240 corresponding shifts as planar rotations.
With the exception of a reduced number of spike trains, warping functions
are clustered according to paths: all spike trains associated to the same path
are shifted nearly the same way as if the algorithm were trying to match the
movements across curves. If this is so, the spike trains assigned to the first
cluster will be the ones characterized by a very high neuronal activity during
the movement from button four to button one (i.e., bottom-right/top-right),
while those assigned to the second cluster will be the ones characterized by high
neuronal activity also during the movement from button three to button four
(i.e., bottom-left/bottom-right).

Finally, in order to check for any relation between the two clusters and the
warping functions, in Figure 7 we report the warping shifts separated according
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Fig 6. Warping shifts by setting k = 2 and the group of warping functions equal to Hshift.

Each panel is associated to one of the four possible paths.

Fig 7. Warping shifts by setting k = 2 and the group of warping functions equal to Hshift.

Each panel is associated to one of the two clusters.

to cluster assignment. The picture clearly shows that there is no relation between
warping functions and clusters. As a final comment, it is important to note that
the choice of a proper similarity measure (i.e., eq. (3.1) in a periodic setting)
and a proper group of warping functions (i.e., shifts) has been the key to unveil
an hidden clustering structure in the signal shape that was completely masked
by clusters in the phase directly related to the four path types and which are
here captured by the warping functions.

4. Discussion

In the non-periodic data analysis we pointed out that alignment was not needed
for the identification of clusters associated to paths. This finding is supported by
the analysis presented in Lu and Marron (2014). Indeed, they show that the first
two principal components of the unaligned data clearly point out four groups of
data associated to paths while these groups are confounded if data are aligned.
Instead, in the periodic data analysis we found a strong association between
phase variability (i.e., periodic shifts) and paths. This kind of association has
also been pointed out by Wu and Srivastava (2014).
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