1,739 research outputs found

    Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal

    Get PDF
    We investigate experimentally metal-insulator-silicon-insulator-metal (MISIM) waveguides that are fabricated by using fully standard CMOS technology. They are hybrid plasmonic waveguides, and they have a feature that their insulator is replaceable with functional material. We explain a fabrication process for them and discuss fabrication results based on 8-inch silicon-on-insulator wafers. We measured the propagation characteristics of the MISIM waveguides that were actually fabricated to be connected to Si photonic waveguides through symmetric and asymmetric couplers. When incident light from an optical source has transverse electric (TE) polarization and its wavelength is 1318 or 1554 nm, their propagation losses are between 0.2 and 0.3 dB/mu m. Excess losses due to the symmetric couplers are around 0.5 dB, which are smaller than those due to the asymmetric couplers. Additional measurement results indicate that the MISIM waveguide supports a TE-polarized hybrid plasmonic mode. Finally, we explain a process of removing the insulator without affecting the remaining MISIM structure to fabricate similar to 30-nm-wide nanochannels which may be filled with functional material.open8

    Temperature change in pig rib bone during implant site preparation by low-speed drilling

    Get PDF
    OBJECTIVES: The purpose of this study was to evaluate the temperature change during low-speed drilling using infrared thermography. MATERIAL AND METHODS: Pig ribs were used to provide cortical bone of a similar quality to human mandible. Heat production by three implant drill systems (two conventional drilling systems and one low-speed drilling system) was evaluated by measuring the bone temperature using infrared thermography. Each system had two different bur sizes. The drill systems used were twist drill (2.0 mm/2.5 mm), which establishes the direction of the implant, and finally a 3.0 mm-pilot drill. Thermal images were recorded using the IRI1001 system (Infrared Integrated Systems Ltd.). Baseline temperature was 31±1ÂșC. Measurements were repeated 10 times, and a static load of 10 kg was applied while drilling. Data were analyzed using descriptive statistics. Statistical analysis was conducted with two-way ANOVA. RESULTS AND CONCLUSIONS: Mean values (n=10 drill sequences) for maximum recorded temperature (Max TÂșC), change in temperature (ΔTÂșC) from baseline were as follows. The changes in temperature (ΔTÂșC) were 1.57ÂșC and 2.46ÂșC for the lowest and the highest values, respectively. Drilling at 50 rpm without irrigation did not produce overheating. There was no significant difference in heat production between the 3 implant drill systems (p>;0.05). No implant drill system produced heat exceeding 47ÂșC, which is the critical temperature for bone necrosis during low-speed drilling. Low-speed drilling without irrigation could be used during implant site preparation

    Vertically integrated visible and near-infrared metasurfaces enabling an ultra-broadband and highly angle-resolved anomalous reflection

    Get PDF
    An optical device with minimized dimensions, which is capable of efficiently resolving an ultra-broad spectrum into a wide splitting angle but incurring no spectrum overlap, is of importance in advancing the development of spectroscopy. Unfortunately, this challenging task cannot be easily addressed through conventional geometrical or diffractive optical elements. Herein, we propose and demonstrate vertically integrated visible and near-infrared metasurfaces which render an ultra-broadband and highly angle-resolved anomalous reflection. The proposed metasurface capitalizes on a supercell that comprises two vertically concatenated trapezoid-shaped aluminum antennae, which are paired with a metallic ground plane via a dielectric layer. Under normal incidence, reflected light within a spectral bandwidth of 1000 nm ranging from = 456 nm to 1456 nm is efficiently angle-resolved to a single diffraction order with no spectrum overlap via the anomalous reflection, exhibiting an average reflection efficiency over 70% and a substantial angular splitting of 58 degrees. In light of a supercell pitch of 1500 nm, to the best of our knowledge, the micron-scale bandwidth is the largest ever reported. It is noted that the substantially wide bandwidth has been accomplished by taking advantage of spectral selective vertical coupling effects between antennae and ground plane. In the visible regime, the upper antenna primarily renders an anomalous reflection by cooperating with the lower antenna, which in turn cooperates with the ground plane and produces phase variations leading to an anomalous reflection in the near-infrared regime. Misalignments between the two antennae have been particularly inspected to not adversely affect the anomalous reflection, thus guaranteeing enhanced structural tolerance of the proposed metasurface.This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIP) (No. 2016R1A2B2010170 and 2011-0030079) and by a Research Grant of Kwangwoon University in 2018. The work was partly supported by the Australian Research Council Future Fellowship (FT110100853, Dr Duk-Yong Choi), and was performed in part at the ACT node of the Australian National Fabrication Facility. The authors thank Prof. L. Shi, Prof. J. Zi and Y. Zhang from Fudan University and Dr H. Yin from Ideaoptics Inc., for their help with the Fourier-transformbased angle-resolved spectroscopy (FT-ARS) measurements

    High grade anorectal stricture complicating Crohn's disease: endoscopic treatment using insulated-tip knife

    Get PDF
    Endoscopic treatments have emerged as an alternative to surgery, in the treatment of benign colorectal stricture. Unlike endoscopic balloon dilatation, there is limited data on endoscopic electrocautery incision therapy for benign colorectal stricture, especially with regards to safety and long-term patency. We present a case of a 29-year-old female with Crohn's disease who had difficulty in defecation and passing thin stools. A pelvic magnetic resonance imaging scan, gastrograffin enema, and sigmoidoscopy showed a high-grade anorectal stricture. An endoscopic insulated-tip knife incision was successfully performed to resolve the problem. From our experience, we suggest that endoscopic insulated-tip knife treatment may be a feasible and effective modality for patients with short-segment, very rigid, fibrotic anorectal stricture

    Two Cases of Branch Retinal Arterial Occlusion After Carotid Artery Stenting in the Carotid Stenosis

    Get PDF
    We describe two cases of branch retinal artery occlusion (BRAO) after carotid artery (CA) stenting

    Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay

    No full text
    We present a highly efficient omnidirectional color filter that takes advantage of an Ag-TiO2-Ag nano-resonator integrated with a phase-compensating TiO2 overlay. The dielectric overlay substantially improves the angular sensitivity by appropriately compensating for the phase pertaining to the structure and suppresses unwanted optical reflection so as to elevate the transmission efficiency. The filter is thoroughly designed, and it is analyzed in terms of its reflection, optical admittance, and phase shift, thereby highlighting the origin of the omnidirectional resonance leading to angle-invariant characteristics. The polarization dependence of the filter is explored, specifically with respect to the incident angle, by performing experiments as well as by providing the relevant theoretical explanation. We could succeed in demonstrating the omnidirectional resonance for the incident angles ranging to up to 70°, over which the center wavelength is shifted by below 3.5% and the peak transmission efficiency is slightly degraded from 69%. The proposed filters incorporate a simple multi-layered structure and are expected to be utilized as tri-color pixels for applications that include image sensors and display devices. These devices are expected to allow good scalability, not requiring complex lithographic processes.This work was supported by a National Research Foundation of Korea grant funded by the Korean government (MEST) (No. 2013-008672 and 2013-067321), and also by a research grant from Kwangwoon University in 2014. The work was partly supported by the Australian Research Council Future Fellowship (FT110100853, Dr. Duk-Yong Choi) and was performed in part at the ACT node of the Australian National Fabrication Facilit
    • 

    corecore