76 research outputs found

    Necklace-like microvacuoles of tumor cells in blastic plasmacytoid dendritic cell neoplasm

    Get PDF

    Real-Time PCR Method for HPV DNA Detection

    Get PDF
    Human papillomavirus (HPV) infection is an important etiologic factor in cervical carcinogenesis. Various HPV DNA detection methods have been evaluated for clinicopathological level. For the specimens with normal cytological finding, discrepancies among the detection methods were frequently found and adequate interpretation can be difficult. 6,322 clinical specimens were submitted and evaluated for real-time PCR and Hybrid Capture 2 (HC2). 573 positive or "Not Detected but Amplified" (NDBA) specimens by real-time PCR were additionally tested using genetic analyzer. For the reliability of real-time PCR, 325 retests were performed. Optimal cut-off cycle threshold ( ) value was evaluated also. 78.7% of submitted specimens showed normal or nonspecific cytological finding. The distributions of HPV types by real-time PCR were not different between positive and NDBA cases. For positive cases by fragment analysis, concordance rates with real-time PCR and HC2 were 94.2% and 84.2%. In NDBA cases, fragment analysis and real-time PCR showed identical results in 77.0% and HC2 revealed 27.6% of concordance with fragment analysis. Optimal cut-off value was different for HPV types. NDBA results in real-time PCR should be regarded as equivocal, not negative. The adjustment of cut-off value for HPV types will be helpful for the appropriate result interpretation

    Saponin Inhibits Hepatitis C Virus Propagation by Up-regulating Suppressor of Cytokine Signaling 2

    Get PDF
    Saponins are a group of naturally occurring plant glycosides which possess a wide range of pharmacological properties, including anti-tumorigenic and antiviral activities. To investigate whether saponin has anti-hepatitis C virus (HCV) activity, we examined the effect of saponin on HCV replication. HCV replication was efficiently inhibited at a concentration of 10 µg/ml of saponin in cell culture grown HCV (HCVcc)-infected cells. Inhibitory effect of saponin on HCV replication was verified by quantitative real-time PCR, reporter assay, and immunoblot analysis. In addition, saponin potentiated IFN-α-induced anti-HCV activity. Moreover, saponin exerted antiviral activity even in IFN-α resistant mutant HCVcc-infected cells. To investigate how cellular genes were regulated by saponin, we performed microarray analysis using HCVcc-infected cells. We demonstrated that suppressor of cytokine signaling 2 (SOCS2) protein level was distinctively increased by saponin, which in turn resulted in inhibition of HCV replication. We further showed that silencing of SOCS2 resurrected HCV replication and overexpression of SOCS2 suppressed HCV replication. These data imply that saponin inhibits HCV replication via SOCS2 signaling pathway. These findings suggest that saponin may be a potent therapeutic agent for HCV patients

    DNA Microarray-Based Gene Expression Profiling in Porcine Keratocytes and Corneal Endothelial Cells and Comparative Analysis Associated with Xeno-related Rejection

    Get PDF
    Porcine to rat corneal xenotransplantation resulted in severe inflammation and rejection of the corneal stroma, whereas an allograft showed mainly endothelial cell-associated rejection. We, therefore, investigated and compared the gene expression between porcine keratocytes and corneal endothelial cells. RNA was isolated from primary cultured porcine or human keratocytes and porcine corneal endothelial cells. Gene expression was comparatively analyzed after normalization with microarray method using Platinum pig 13 K oligo chip (GenoCheck Co., Ltd., Ansan, Korea). Real-time polymerase chain reaction (PCR) was performed for C1R, CCL2, CXCL6, and HLA-A in porcine keratocytes and corneal endothelial cells. As a result, upregulated expression more than 2 folds was observed in 1,162 genes of porcine keratocytes versus porcine endothelial cells. Among the immune-regulatory genes, SEMA3C, CCL2, CXCL6, F3, HLA-A, CD97, IFI30, C1R, and G1P3 were highly expressed in porcine keratocytes, compared to porcine corneal endothelial cells or human keratocytes. When measured by real-time PCR, the expression of C1R, CCL2, and HLA-A was higher in porcine keratocytes compared to that in porcine corneal endothelial cells. In conclusion, the increased expression of C1R, CCL2, and HLA-A genes in porcine keratocytes might be responsible for the stromal rejection observed in a porcine to rat corneal xenotransplantation

    Upgrade of Lesions Initially Diagnosed as Low-Grade Gastric Dysplasia upon Forceps Biopsy Following Endoscopic Resection

    Get PDF

    Whole-Genome Sequencing for Investigating a Health Care-Associated Outbreak of Carbapenem-Resistant Acinetobacter baumannii

    No full text
    Carbapenem-resistant Acinetobacter baumannii (CRAB) outbreaks in hospital settings challenge the treatment of patients and infection control. Understanding the relatedness of clinical isolates is important in distinguishing outbreak isolates from sporadic cases. This study investigated 11 CRAB isolates from a hospital outbreak by whole-genome sequencing (WGS), utilizing various bioinformatics tools for outbreak analysis. The results of multilocus sequence typing (MLST), single nucleotide polymorphism (SNP) analysis, and phylogenetic tree analysis by WGS through web-based tools were compared, and repetitive element polymerase chain reaction (rep-PCR) typing was performed. Through the WGS of 11 A. baumannii isolates, three clonal lineages were identified from the outbreak. The coexistence of blaOXA-23, blaOXA-66, blaADC-25, and armA with additional aminoglycoside-inactivating enzymes, predicted to confer multidrug resistance, was identified in all isolates. The MLST Oxford scheme identified three types (ST191, ST369, and ST451), and, through whole-genome MLST and whole-genome SNP analyses, different clones were found to exist within the MLST types. wgSNP showed the highest discriminatory power with the lowest similarities among the isolates. Using the various bioinformatics tools for WGS, CRAB outbreak analysis was applicable and identified three discrete clusters differentiating the separate epidemiologic relationships among the isolates
    corecore