1,224 research outputs found

    FE Modeling Methodology for Load Analysis and Preliminary Sizing of Aircraft Wing Structure

    Get PDF
    It is a critical part at the basic design phase of aircraft structural design to build a finite element model and it will have a direct impact on time and cost for airframe structure development. In addition, the objective of finite element model will be varied depending on each design review phase and the modelling methodology varied accordingly. In order to build an effective and economic finite element model, it is required to develop adequate level of modelling methodology based on each design phase and its objectives. Therefore, in this paper, the finite element modeling methodology was presented for internal load analysis of wing structure of multi-spar type military aircraft, load path evaluation and initial sizing of wing structure. All structures reflected mechanical function and at the same time, idealized to achieve easy and conservative result of internal load evaluation. Through analysis of various loads, it was confirmed that the finite element modeling suggested in this paper and initial sizing method could be applied to internal load analysis of wing structure and initial sizing

    Investigation of the SH3BP2 Gene Mutation in Cherubism

    Get PDF
    Cherubism is a rare developmental lesion of the jaw that is generally inherited as an autosomal dominant trait. Recent studies have revealed point mutations in the SH3BP2 gene in cherubism patients. In this study, we examined a 6-year-old Korean boy and his family. We found a Pro418Arg mutation in the SH3BP2 gene of the patient and his mother. A father and his 30-month-old younger brother had no mutations. Immunohistochemically, the multinucleated giant cells proved positive for CD68 and tartrate-resistant acid phosphatase (TRAP). Numerous spindle-shaped stromal cells expressed a ligand for receptor activator of nuclear factor kB (RANKL), but not in multinucleated giant cells. These results provide evidence that RANKL plays a critical role in the differentiation of osteoclast precursor cells to multinucleated giant cells in cherubism. Additionally, genetic analysis may be a useful method for differentiation of cherubism.</p

    Time-varying radome slope estimation for passive homing anti-ship missiles

    Get PDF
    This paper addresses a time-varying radome slope (RS) estimation problem for passive homing anti-ship missiles. Apart from conventional approaches, the non-linear characteristics of the radome aberration error is taken into account for modeling the RS dynamics. In addition, it is shown that the acceleration dither is necessary for ensuring the observability of the RS estimation with passive seeker measurements. Based on this observation, a linear RS measurement equation is set up by analyzing the seeker response to the high-frequency acceleration dither. Thus, the RS estimation problem can be easily resolved by designing a time-varying Kalman filter. Since the proposed approach adopts a simple linear filter structure, it is suitable for an in-flight real-time RS estimation. Through the computer simulation for a typical ASM-target engagement scenario, the usefulness of the suggested scheme is demonstrated

    Laboratory observations of triad interaction of deep water wind waves

    Get PDF
    author's final versionThe triad interactions have been known to be important only for shoaling waves or finite depth wind waves. In deep water, they are insignificant compared with the quadruplet interactions in respect to the evolution of wind waves due to energy transfer among the wave components. However, the triad interactions may be important even for deep water waves because they may closely be related to the wave steepness, which definitely affects wave breaking, drag of air flow over the sea, or navigation of ships, especially during the early stage of the development of wind waves. This study reports a series of laboratory experiments, whose data are subjected to bispectral analyses to investigate the triad interactions of deep-water wind waves. It is found that the bicoherence at the spectral peak frequency and the wave steepness are almost directly proportional, indicating that the steep waves with peaked crests and flat troughs are resulted from the triad interactions. Both bicoherence and wave steepness increase with the wave age during the early stage of wave generation and then drop off as the waves grow old. It seems that the energy of the secondary spectral peak developed by the triad interactions during the early stage of wave generation is redistributed to the neighboring frequencies by the quadruplet interactions during the later stage

    Signal Transduction Mechanisms Underlying Group I mGluR-mediated Increase in Frequency and Amplitude of Spontaneous EPSCs in the Spinal Trigeminal Subnucleus Oralis of the Rat

    Get PDF
    Group I mGluRs (mGluR1 and 5) pre- and/or postsynaptically regulate synaptic transmission at glutamatergic synapses. By recording spontaneous EPSCs (sEPSCs) in the spinal trigeminal subnucleus oralis (Vo), we here investigated the regulation of glutamatergic transmission through the activation of group I mGluRs. Bath-applied DHPG (10 μM/5 min), activating the group I mGluRs, increased sEPSCs both in frequency and amplitude; particularly, the increased amplitude was long-lasting. The DHPG-induced increases of sEPSC frequency and amplitude were not NMDA receptor-dependent. The DHPG-induced increase in the frequency of sEPSCs, the presynaptic effect being further confirmed by the DHPG effect on paired-pulse ratio of trigeminal tract-evoked EPSCs, an index of presynaptic modulation, was significantly but partially reduced by blockades of voltage-dependent sodium channel, mGluR1 or mGluR5. Interestingly, PKC inhibition markedly enhanced the DHPG-induced increase of sEPSC frequency, which was mainly accomplished through mGluR1, indicating an inhibitory role of PKC. In contrast, the DHPG-induced increase of sEPSC amplitude was not affected by mGluR1 or mGluR5 antagonists although the long-lasting property of the increase was disappeared; however, the increase was completely inhibited by blocking both mGluR1 and mGluR5. Further study of signal transduction mechanisms revealed that PLC and CaMKII mediated the increases of sEPSC in both frequency and amplitude by DHPG, while IP3 receptor, NO and ERK only that of amplitude during DHPG application. Altogether, these results indicate that the activation of group I mGluRs and their signal transduction pathways differentially regulate glutamate release and synaptic responses in Vo, thereby contributing to the processing of somatosensory signals from orofacial region

    Southern Hemisphere mid- and high-latitudinal AOD, CO, NO2, and HCHO: spatiotemporal patterns revealed by satellite observations

    Get PDF
    To assess air pollution emitted in Southern Hemisphere mid-latitudes and transported to Antarctica, we investigate the climatological mean and temporal trends in aerosol optical depth (AOD), carbon monoxide (CO), nitrogen dioxide (NO2), and formaldehyde (HCHO) columns using satellite observations. Generally, all these measurements exhibit sharp peaks over and near the three nearby inhabited continents: South America, Africa, and Australia. This pattern indicates the large emission effect of anthropogenic activities and biomass burning processes. High AOD is also found over the Southern Atlantic Ocean, probably because of the sea salt production driven by strong winds. Since the pristine Antarctic atmosphere can be polluted by transport of air pollutants from the mid-latitudes, we analyze the 10-day back trajectories that arrive at Antarctic ground stations in consideration of the spatial distribution of mid-latitudinal AOD, CO, NO2, and HCHO. We find that the influence of mid-latitudinal emission differs across Antarctic regions: western Antarctic regions show relatively more back trajectories from the mid-latitudes, while the eastern Antarctic regions do not show large intrusions of mid-latitudinal air masses. Finally, we estimate the long-term trends in AOD, CO, NO2, and HCHO during the past decade (2005-2016). While CO shows a significant negative trend, the others show overall positive trends. Seasonal and regional differences in trends are also discussed

    Dehydrogenation of ammonia-borane by cationic Pd(II) and Ni(II) complexes in a nitromethane medium: hydrogen release and spent fuel characterization

    Get PDF
    A highly electrophilic cationic PdII complex, [Pd(MeCN)_4][BF_4]_2 (1), brings about the preferential activation of the B–H bond in ammonia-borane (NH3·BH3, AB). At room temperature, the reaction between 1 in CH_3NO_2 and AB in tetraglyme leads to Pd nanoparticles and formation of spent fuels of the general formula MeNH_xBO_y as reaction byproducts, while 2 equiv. of H_2 is efficiently released per AB equiv. at room temperature within 60 seconds. For a mechanistic understanding of dehydrogenation by 1, the chemical structures of spent fuels were intensely characterized by a series of analyses such as elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), solid state magic-angle-spinning (MAS) NMR spectra (^2H, ^(13)C, ^(15)N, and ^(11)B), and cross polarization (CP) MAS methods. During AB dehydrogenation, the involvement of MeNO2 in the spent fuels showed that the mechanism of dehydrogenation catalyzed by 1 is different from that found in the previously reported results. This AB dehydrogenation derived from MeNO_2 is supported by a subsequent digestion experiment of the AB spent fuel: B(OMe)_3 and N-methylhydroxylamine ([Me(OH)N]_2CH_2), which are formed by the methanolysis of the AB spent fuel (MeNH_xBO_y), were identified by means of ^(11)B NMR and single crystal structural analysis, respectively. A similar catalytic behavior was also observed in the AB dehydrogenation catalyzed by a nickel catalyst, [Ni(MeCN)_6][BF_4]_2 (2)

    An Unusual Case with Membranous Lipodystrophy in a Hypertensive Patient with Transepidermal Elimination

    Get PDF
    Membranous lipodystrophy represents a peculiar type of fat necrosis that is present in patients with various types of skin disease. It is characterized by the presence of microcysts and macrocysts and is lined by amorphous eosinophilic material with a crenelated arabesque appearance. These findings have been associated with lupus erythematosus, diabetes mellitus, erythema nodosum, trauma, etc. We report a case of a 43-year-old woman who had a red to purple asymptomatic indurated plaque, approximately seven cm in diameter and on the left arm. She was a chronic hepatitis B antigen carrier and had hypertension for four years. Histopathology of the biopsied lesion showed transepidermal elimination of altered collagen and elastic fibers, as well as membranous lipodystrophy changes. There were hypertensive vascular changes including lymphohistiocytic infiltration around the vascular wall, swelling of endothelial cells, increased thickness of the vascular walls, and narrowing of the lumen. We report a case showing transepidermal elimination with membranous lipodystrophy. We carefully suggest that the secondary phenomenon of transepidermal elimination was associated with membranous lipodystrophy and degenerate connective tissues
    corecore