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Introduction 

The finite element model has a direct impact on time and cost of analysis 

especially for internal load evaluation and initial sizing of the aircraft which 

constructed with enormous number of structural elements. Also, as for the 

development of aircraft, each design phase such as concept design, basic design, 

and detail design has a separate detailed design objective and has a difference 

from depth and accuracy of required design and analysis per each phase. 

Therefore, the finite element model should be developed while maintaining 

accuracy of overall analysis, adequately simplifying and idealizing in accordance 

with each design phase, it is a key to the computational structural analysis. 

As for the finite element model for internal load analysis of aircraft and 

initial sizing, it should be built primarily for designers to easily determine the 

internal load or the level of stress applied to the main joints of aircraft and the 

main structure. So, for this, it is required to avoid using the beam element or 

bending plate that has bending stiffness as far as possible, it is suggested to use 

one-dimensional rod element, two-dimensional membrane, and shear panel that 

have apparent load path mechanism and simple finite elements. In addition, while 

not attached to the local characteristics or shape of each structure too much, it is 

required to correctly reflect the design intent of designer on overall structure 

particularly the main structure and load transfer concept on joints. In case of 

constructing the finite element model on the actual aircraft structure, it can take 

much time for modeling even the fact that it facilitated up-to-date pre-processing 

and at the basic design phase, those process could be numerously iterated due to 

the frequent design changes. Therefore, the time takes for modeling should be the 

one of factors to decide the modeling methodology. 

The finite element model developed for internal load analysis and initial 

sizing of aircraft is activated by adequate analysis solver by applying external 

load created separately and data. However, since the aircraft is the statically 

indeterminate structure that has the enormous amount of internal redundancies, 

the dimension and stress level for each structure are interlinked. Therefore, to 

design all structures have lower stress level than allowable stress, the iteration 

calculation applying optimization concept is required. 

As for the researches related to aircraft element model, Bruhn (1973) and 

Niu (1988) arranged theories and practice on analysis and design of flight vehicle. 

Buehrle et al. (2000) built the finite element model of stiffener, panel, and aircraft 

fuselage and verified it by experiment modal analysis. Wittenberg et al. simulated 

post buckling behavior from fuselage structure with aluminum alloy and applied 

on the fiber metal laminates (FML) material (2001). Bhattacharya et al. (2002) 
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developed the shell element that is able to have shear deformation based on theory 

of Reissner on the smart laminate composite shell analysis, whereas Karaağaçlı et 

al. (2012) constructed the dynamically equivalent finite element model and 

presented the method to revise the finite element model of aircraft by using the 

result of ground vibration test. In addition, van der Ven et al. (2012) developed the 

modeling framework to decide the structural dynamic load of elements of 

fuselage and calculated the structural dynamic load of fuselage in relatively easy 

and cost-efficient way. Yan et al. (2012) presented the calculation method on 

punch and die boundary condition based on special simulation process and 

bending line coordinates in order to set the FEM model based on press bending 

forming process of integrated panel of aircraft. Gennaretti et al. (2013) described 

transfer process related to internal vibration on vibration load delivered by the 

wing through detail finite element model of fuselage to evaluate the vibration 

level of tiltrotor, whereas Kongo Kondé et al. (2013) used the finite element 

model to model and simulate the interaction between the tire of aircraft and 

ground considering non-linearity of materials. 

Tang et al. (2013) suggested the parametric modeling method of finite 

element of wing structure of aircraft due to the time-consuming characteristic of 

preprocess of the finite element analysis. Truong et al. (2013) researched 

one-dimensional (1-D) and three-dimensional methods to effectively model of 

rotor blade structure of helicopter and described the accuracy of current structural 

modeling based on one-dimensional beam theory. The next year, Bergan et al. 

(2014) conducted modeling of panel of aircraft fuselage and described the 

longitudinal tension, internal pressure, combined axial tension, damage process 

applying internal pressure loading condition, and presented the design 

methodology of damage prevention. Concurrently, Guo et al. (2014) described the 

development of the finite element (FE) model to research the performance of test 

tire of aircraft and evaluate the safety criteria, while the dynamic simulation was 

analyzed to calculate the load of tire in aircraft landing scenario. Kapidžić et al. 

(2014) developed three-dimensional solid finite element model of composite Al 

alloy single-lap bolt joint that has titanium joint of counter link. Lim (2014) 

researched the verification process of satellite finite element (FE) model using 

analytical sine wave test and dynamic test result. In addition, Sasaki et al. (2014) 

conducted the self-weight deformation test and stretch forming test that have large 

radius of curvature in order to research the maximum simulation parameters that 

enable to accurately expect spring back and self-weight deformation on fuselage 

skin. Kumar and Mishra (2016) idealized main components of aircraft including 

dynamic mass, stiffness matric, base plate, installed frame, arm, support frame, 
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propeller and whirl set and modeled quad copter. Most recently, Herrada et al. 

(2017) presented new and innovative methodology to accelerate parametric 

analysis on large structure under dynamic load. 

In this paper, as a means of systematization and standardization of 

computational structural analysis of aircraft methodology, the load path of wing 

structure of subsonic military aircraft reviewed and presented the finite element 

modeling methodology for calculation of internal load and initial sizing on main 

structure and joints. The subject structure of research was the multi-spar type of 

aircraft wing that mostly adopted on up-to-date military aircraft being developed 

and modelled under the environment of widely used structural analysis program, 

MSC/NASTRAN. In addition, by applying multi-load case on the developed 

finite element model, the initial sizing procedure that can decide the initial sizing 

was presented for all structures to have lower level of stress than allowable stress 

level. 

 

Finite Modeling for Aircraft Wing Assembly 

Objective of Aircraft FE Modeling 

The full-scaled finite element model was built with entire aircraft as an 

one finite element model by combining each modeled structure that constructing 

the airframe. Most of cases, the accuracy of full-scaled model has a direct impact 

on the analysis result since the detailed stress analysis of each component is 

conducted by using internal load calculated from the full-scaled model.  

The full-scaled model is a classic coarse grid FEM and facilitated as below 

purposes: 

 

- Load path verification of structures 

- Calculation of internal load and free body load 

- Calculation of stiffness and displacement of structures 

The full-scaled finite element model includes all main structure members 

that construct the aircraft in order to accurately calculate the internal load. In 

addition, when modeling each member, it was more focused on accurately 

reflecting stiffness of structure that has impact on internal load distribution than 

reflecting the actual structure configuration in detail. The detail finite element 

model most applied for unit item analysis is facilitated as below purposes. 

 

- When difficult to achieve accurate internal load by calculation or 
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coarse grid FEM 

- When calculating stress distribution and stress level for durability or 

damage tolerance analysis on the area that created concentrated stress 

- In case of the fitting with complex load path or cutout 

- During structural test, in order to accurately expect the strain on the 

strain gage position where damage possibly occurred. 

 

During development process of aircraft, the full-scaled finite element 

model has been facilitated from the basic design phase for main structure 

assignment. In the initial design phase when the main structure assignment and 

sizing have not been decided, most of web was modelled as shear element, skin 

was modelled as membrane element and longitudinal member was modelled as 

rod element. Then, entering the detail design phase, as the maturity of design was 

increasing, most of structures were modelled as shell element that has bending 

stiffness to calculate actual internal load and it resulted in some weight loss. Also, 

as the use of shell element increased, it became possible to directly apply the 

constructed the full-scaled model on dynamic analysis in order to calculate 

internal load without modification work. Figure 1 shows the changes in maturity 

of full-scaled model per design phase based on the number of elements and nodal 

points used in model. 
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Figure 1. Finite element model for load analysis & preliminary design of aircraft. 

 

During development process of aircraft, the full-scaled finite element 

model has been facilitated from the basic design phase for main structure 

assignment. In the initial design phase when the main structure assignment and 

sizing have not been decided, most of web was modelled as shear element, skin 

was modelled as membrane element and longitudinal member was modelled as 

rod element. Then, entering the detail design phase, as the maturity of design was 

increasing, most of structures were modelled as shell element that has bending 

stiffness to calculate actual internal load and it resulted in some weight loss. Also, 

as the use of shell element increased, it became possible to directly apply the 

constructed the full-scaled model on dynamic analysis in order to calculate 

internal load without modification work.  

 

Aircraft wing-box. 

The wing box consists of skin, spar and rib. Generally, the skin of the 

wing of supersonic and multi-spar aircraft is the most important component to 

support not only for torsion of wing but for the bending load. However, the 
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self-bending stiffness was not considered at the basic design phase and having the 

upper and lower skins support the flap wise tension and compression load, the 

bending moment extended on the wing can be supported as a result. Therefore, as 

shown in Figure 2, it is adequate that the skin of the wing should use the 

membrane element that can transfer only the in-plane tension, compression and 

shear load. This can have more conservative result than considering bending 

stiffness and effective method that can allow to easily calculate the internal load 

and reduce the calculation time at the detail design phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Idealization of aircraft wing box structure. 

 

 

The structural function of spar in multi-spar wing is to support the shear 

force applied on the wing and improve the buckling capacity of skin. The flange 

of spar is aimed to install spar on the skin and it can support the part of bending 

moment applied on the wing as a compressed form. Therefore, the web of spar 

was modelled as a shear panel that only support the pure shear load and the flange 

was modelled as a rod element that only support one-dimensional load. Along 

with spar, the rib, the other internal structure, is mainly used for hard point to 

install outside attachments or for transferring the concentrated load delivered by 

leading flap or flaperon. Therefore, the rip that used for hard point, it should be 

modelled as three-dimensional solid element in a strict sense but, there is a main 

purpose for rid modelling to find out the size of load and its path delivered at the 

basic design phase. Same as spar, it is common that the web of rib is idealized as 
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shear panel, the flange is idealized as rod element. 

 

Flaperon. 

The sandwich structure shown in Figure 3 has great characteristics like 

lightweight, bending stiffness so it is widely used in control surfaces like flap, 

aileron and rudder both in military aircraft and commercial aircraft. Therefore, in 

this paper, the finite element modeling methodology on the flaperon activated by 

hydraulic system was presented as a form of honeycomb core sandwich structure. 

There are various methods to idealize honeycomb core sandwich structure, two of 

methods are mostly used among them. 

First, as presented in Figure 3, the membrane that is in charge of face 

material and in-plane load of sandwich structure, the core is idealized as shear 

panel that have on the transverse shear stiffness. Also, the rod element is installed 

transversely to remove transverse numerical instability and complement the 

minute longitudinal stiffness on the core. In the second method, the face material 

same as in first is modeled as membrane but, the core is modeled as 

three-dimensional solid element and shown as in Figure 3. In this paper, the 

second method selected that enables the calculation of all forms of transverse 

three-dimensional stress to conduct the research on de-bonding of face material 

and core afterward. In addition, it can be another reason for design engineers to 

favor the model that use the solid element in terms of time consuming to finite 

element modeling, the second method is advantageous. 
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Figure 3. Idealization of honeycomb core sandwich structure. 

 

Along with idealization of sandwich structure, the important part in finite 

element modeling of flaperon is the idealization of joints of flaperon. The most of 

subsonic military aircraft developed recently has an activation method that 

flaperon is installed on the trailing spar of the wing by several hinges and activate 

by hydraulic cylinder that installed in inside of fuselage. Therefore, the bottom 

line of flaperon idealization at the basic design phase is to model in order to 

accurately calculate the load on each hinge and the reaction force on internal part 

of fuselage. 

In this paper, it was designed that each hinge can transfer the load only 

excluding the moment and at the same time the movement of hinge axis direction 

can be created freely. Also, as for the alignment of flaperon, the movement of 

longitudinal direction of hinge axis can be set freely in the internal and outside of 

hinges excluding the center hinge. The hinges and hydraulic cylinder are modeled 

as rod element and therefore, the hinge moment in flaperon can be calculated as 

multiply of the load on rod element of hydraulic cylinder and the longitudinal 

distance from hinge axis. Also, the reaction force from each hinge and supporting 

points can be easily decided from the node force from the related node. 
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Figure 4. Finite element model example for flaperon. 

 

In Figure 4, the thick arrow shows the degree of freedom of bind in 

supporting point and joints. The hinge load and moment achieved from the 

internal load analysis using this model, it should be same as the hinge load and 

moment by outside load created load group and whether it is same as the load and 

moment by two methods can be the standard for feasibility review of finite 

element model. 

 

Leading edge flap. 

As for the leading-edge flap, it is mostly installed in the entire part of 
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leading-edge flap of aircraft and therefore, it has a characteristic of slenderness 

ratio. With this geometric characteristic, the leading-edge flap is weak for bending, 

as such, it is difficult to directly transfer the torque to the entire structure with one 

hinge axis within fuselage as the way of the flaperon. Therefore, most of aircraft 

takes a method to use several rotary actuators and directly transfer the torque in 

each hinge that is required for leading edge flap. 

As such, not like flaperon, the hinge of leading-edge flap has to transfer 

not only the shear and vertical force but, the torque. However, when idealizing the 

hinge of the leading-edge flap with using one-dimensional element same as the 

hinge of flaperon, the one-dimensional element come to receive the bending 

moment by the driving torque. So, in this case, instead of using rod element, the 

general beam element has to be used for modeling and other parts will be same as 

the flaperon modeling methodology. 

 

Wing Attachment Fitting 

If it is not all-in-one, the way to install the aircraft wing to fuselage is 

divided into the lug method and the tension bolt method. In this paper, the 

modeling methodology for tension bolt is presented that is adopted for F-16 

aircraft. The tension bolt method is the way that all shear, bending and torsion 

load on the wings are transferred to wing-carry-thru-bulk-head of fuselage by 

wing-to-Fuselage attach. Fitting and tension bolts installed on the root of the wing. 

When applying this concept, it is very important to accurately calculate the load 

on each fitting and tension bolt. 

As shown in Figure 5, as for the fitting, it is the bending plate element 

having bending stiffness. As for the tension bolt, it used three spring elements that 

can simulate three loads, vertical and horizontal shear forces and tension force. In 

addition, since the pre-post shear tie only supports the shear force excluding 

tension force, the idealization was conducted using two spring elements. 
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Figure 5. Finite element model example for wing attachment fitting. 

 

Therefore, it was possible to calculate for the tension force on the tension 

bolt, drag and vertical shear force in two directions and two shear forces on the 

shear tie. In this case, the tension bolt came to the combined load state on which 

the tension and shear forces simultaneously applied. In this kind of combined 

state, the bolt strength will be decided as below formula (Bruhn, 1973). 

 

(1) 

 

In here, Rs and Rt represent the current stress ration on each shear 

allowable stress and tension allowable stress. In addition, the bending moment on 

root of wings can be calculated from tension force and compression force applied 

on top-and-bottom tension bolts. As same as the flaperon, the sum of load and 

moment calculated from the internal load on each tension bolt should be same as 

the sum of load and moment by external load. As mentioned on the introduction, 

the wings of aircraft are the statically indeterminate structures, the distribution of 

3 2 1S tR R+ =
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load and moment on the root of wings can be varied by the stiffness of tension 

bolt, the stiffness of spring. Therefore, when iterating calculation for initial sizing, 

separate analysis on tension bolt should be conducted in accordance with formula 

(1) and the spring constant for idealization of tension bolt is decided as below 

(Swift, 1990). 

 

 

 

 

(2) 

 

 

 

 

In here, KT and KS are the spring constants for each tension force and 

shear force and E, A, L means elastic modulus, cross-section area and length 

respectively. Ef and Eb are the elastic modulus of fitting and bulk head end pad 

respectively and tf and tb are the width of fitting and bulk head end pad 

respectively. D is the diameter of bolt and B and C are the constant decided by 

materials. 

 

Number System 

The finite element model of wings used in this paper consists of 

approximately 5,000 EA of elements and 2500 EA of nodal points. In general, the 

number of elements and node used for finite element model for aircraft is varied 

by the sophistication of model, as for the finite element model for initial sizing 

and internal load analysis of military combat aircraft at the basic design phase, it 

was known that the number of elements and node accounted for tens of thousands 

respectively. Therefore, each aircraft manufacturers in advanced countries are 

building adequate numbering system of elements and nodes so that it can be able 

to find out on which the module or which component are the element and node 

installed with only the number of element and node. In the same manner, the 

numbering system was set as below for finite element model for wings.  

The numbers for finite elements consist of 7 numbers in total, 

"ABCDEFG" and the first number A represent the unique number of modules, B 

is the form of element, C is the number of component and EFG represents the 

serial number of elements. As for the form of element, depending on the result of 

B, it represents 1(Rod), 2(BAR), 3(Membrane), 4 (Bending Plate), 5(Shear Panel), 

1

1

1 1
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1 1 1
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t actual

t equivalent

6(Solid), 7(Spring). In addition, depending on result of C, it represents l(Wing 

Box), 2(Leading Edge Flap), 3(Fixed Trailing Edge), 4(Flaperon), 

5(Wing-to-Fuselage Attach. Fitting). And if D is 1, it means upper side of wing 

and if it is 2, it means the bottom face. The numbers for nodes, it consists of six 

numbers in total,” ABCDEFG". The first number A means the unique number of 

modules, B is the number of components, C is the location and DEF means the 

serial number of nodes. 

 

Wing Assembly FE Modeling Methodology of Aircraft 

 

Shear Web with Cutout 

The shear web is the member that is mainly supporting shear force. In 

full-scaled fuselage model, if there is a cutout or hole in shear web, the modeling 

methodology is used to directly reflect the configuration on the model or use the 

equivalent thickness reflecting the lowered shear stiffness of web due to the hole. 

If it uses the equivalent thickness, the equivalent thickness of the web with no 

hole that has the same shear stiffness is calculated and then, the result will be set 

as the thickness of element and modeled with the form of no hole. Figure 6 shows 

the curve that calculates the equivalent thickness on the web with a hole. 

 

 

Figure 6. Equivalent thickness curve for web with hole. Adapted from “Airframe 

Structural Design, by M C. Y. Niu, 1998, Technical Book Company, CA. 

 

Skin 

All skins are modeled as the cell elements with bending stiffness. Since 
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L1

Cockpit Floor

Side Longeron

Skin

Skin

Z (Up)

Y (Outboard)

View Looking Aft

t1

t2
L2

t4 t3

t5

t6

t4

t5

t3

Arod = Astiffener + Askin

Arod = (L1) (t2) + (L1) (t1 – t6) + (L2) (t3) + (L2) (t4 - t5)

element nodes of skin are located on OML, in order to revise in, the offset has to 

be applied on shell element. As for the removable panels, its material stiffness is 

adequately reduced based on the direction of application of the load reflecting the 

flexibility of joints. The spar web with the shear load as the main design load, its 

laminate angle of [0/45/90] consists of (30% 60% 10%) with ratio of 

[30%/40%/30%]. The axial load of skin and flange is the main design load and its 

laminate angle of [0/45/90] consists of ratio with (50%, 40%, 10%). 

 

Longitudinal Structure 

The web of all components of longitudinal member is modelled as a shell 

element with bending stiffness. The flange and stiffener are modeled as rod or 

shell element. The Longeron is also modeled as rod element and at this time, the 

area of rod element is calculated as in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Example of calculating area of a longeron rod element. 

 

The spar web is modeled as shell element and spar flange and stiffener are 

modeled as rod element with equivalent area. 
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Ply 6

Ply 5

Ply 4

Skin OML

Laminate 

Thickness

Element Normal

Offset

Material Coordinate System
X

Y

Fiber Direction

Fiber Angle

Ply Thickness

CQUAD4 

Element

Skin IML

Ply 3

Ply 2

Ply 1

If the mid-Plane is 
symmetrical, only the 
bottom half can be defined 

in PCOMP.

Composite & honeycomb structure. 

The skin of main wing and tail wing consist of composite material. The 

skin of composite material is modelled using shell element as in Figure 8 and the 

order and direction of composite material laminates are defined suing PCOMP 

card. The material property of composite material is defined using MAT 8 card. 

All control surfaces excluding horizontal tail wing consist of aluminum 

honeycomb core structure. The top and bottom surface material of honeycomb 

core structure is modeled as shell element. The honeycomb core is the core 

material and is modeled as solid element, the material property of core is defined 

as anisotropic material following direction of ribbon. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Composite modeling of wing skin. 

 

 

Structural Analysis of Full-scaled Aircraft 

 

Sizing Procedure 

The internal force and initial sizing decided in this paper, the stress of all 

structures under all load conditions should not be beyond the allowable stress 

level. The analysis procedure presented in Figure 9 is summarized as below. First 

of all, the load conditions expected to create high stress on aircraft structures are 

applied to the finite element model, conduct the structural analysis and then, the 

stress on all finite elements is calculated. After that, the highest stress value is 

found among the stress created by stress conditions to each finite element and 

calculate the margin of safety comparing with allowable stress for related 
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Figure 9. Load analysis & preliminary design procedure. 

 

At this time, the two-dimensional element such as CQUAD4, CTRIA3 

sets the Von Mises stress, the two-dimensional shear panel element such as 

CSHEAR sets the maximum shear stress and the one-dimensional element such as 

CROD sets the axial stress as a comparison basis. When the stress on each finite 

element is above the allowable stress, in other words, the value of the margin of 

safety is minus, the sizing, thickness or area of element should be increased based 

on the margin of safety and when it is the opposite, the dimension should be 

reduced as much as the difference to enhance the stress. 

In this paper, the margin of safety used for initial sizing of all structures 

excluding tension bolt is defined as in formula (3). 

 

(3) 

 

 

In formula (3), F represents the allowable stress of material and f 

represents the current stress. The sizing data modified is automatically stored as 

input card for structural analysis solver and using data inputted, the structural 

analysis is iterated for all load conditions. By this process of iterations, the stress 

. 1
F

Margin of Safety M S
f

= −
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level can be maintained below the level of allowable stress to all finite elements. 

It was confirmed that most of elements came to have the stress level below 

the level of allowable stress within margin of error. The dummy element used for 

removing numerical instability during initial sizing and some elements with 

bending stiffness are excluded for initial sizing. In addition, the adequate level of 

minimum gage for all elements was to be set so that it could not be below the 

level of minimum sizing in terms of productivity even if the stress level is very 

low. After conducted all the processes above, when the initial sizing for all 

structures are done, the stress value applied on each structure comes to the 

internal force for the structure.  

Finally, the load condition that created the maximum level of stress on 

each finite element comes to the critical load condition and at the basin design 

phase, the critical load condition is set in few multiple numbers to prepare future 

design modification. At the same time, as for the detailed analysis required, the 

detail finite element analysis or analytical calculation is conducted. In general, 

these processes are conducted at the detail design phase but, if it is required at the 

basic design phase it can be proceeded. For example, the size of tension bolt has a 

great impact on the internal load distribution of wings, the separate analysis will 

be conducted when calculation is iterated so that the stiffness of spring element 

can be modified based on modified sizing. 

 

Wing Finite Element Model 

The coarse grid FEM was built to review the adequacy of load transfer 

path based on structural arrangement and create the internal load required for 

stiffness analysis. The coarse grid FEM has the different concept from the finite 

grid FEM, it is focused on adequately simulating the stiffness allocation of overall 

main structures and simplifying the configuration to confirm internal load 

distribution between structures. The FEM solver used for analysis was 

MSC/NASTRAN and the MSC/PATRAN was used as pre/post processor. Most of 

structures was created the two-dimensional element (CTRIA3, CQUAD4), the 

spar/rib flange or stiffener which the main load is the axial load was used the 

one-dimensional element (CROD). In addition, the control surface was assumed 

as honey comb material was used the three-dimensional element (CHEXA, 

CPENTA) to simulate the three-dimensional configuration. 
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To simulate values of material property of composite material lay-up, the 

PCOMP card was applied on the two-dimensional element, the MAT8 card was 

used to represent the values of material property of lamina having the 

-two-dimensional orthotropic property. As shown as in Figure 10, the wing 

configuration of wings were simulated as the finite element model. The modeling 

was constructed with the elements such as CBAR, CROD, CQUAD4, CTRIA3 

elements. The skin of wings consists of different pattern of laminates per each 

sections of wings based on impact of load and combined. 

 

 

 

Figure 10. Finite element model of main wing and under structure. 

The actual main wings of aircraft have different stiffness per joint position 

when connected with fuselage, the load distribution per joint is affected by 

stiffness around the fuselage but, in this phase, it is not allowed to distribute the 

stiffness around the fuselage as same as the actual. In this analysis, the spring 

elements were used on the wing attach lug position and the boundary condition 

was applied on the one edge of the spring elements. The external loads such as 

aerodynamic pressure, drag and inertial load have the form of distribution load, 

the nodes that will be applied by the load were separately selected in order to 

adequately distribute those onto the model. The selected load nodes were the 

nodes of skin having under structure, it was intended to prevent from having main 

influence factor of the load applied the nodes to the analysis result on adjacent 
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area.  

 

 Load analysis of FE model. 

The two critical conditions (+9g & -3g) based on the maximum bending 

load of the main wings were selected and used as the design load. The shear force, 

bending moment and pitching moment per BL station were calculated based on 

the expected load of wings and then, using linear algebra, the load was created by 

the method that the distribution load that meets above results was distributed to 

the main wings. 

The internal load was calculated from the finite element model and 

external load described aforementioned paragraph. Figure 11 shows the 

configuration of deflection on the +9g load condition. Approximately 12 inch of 

the maximum displacement can be confirmed under the ultimate load (1.5 x limit 

load) that usually facilitating for calculation static strength. 

 

 

Figure 11. Maximum deflection & load distribution of main wing. 

 

Figure 11 shows the skin shell force distribution. As approaching to the 

inboard direction, the size of load transferred is increased and it can be confirmed 

that the maximum load was transferred from three positions of wing-fuselage 

joint.  

Table 1 shows the result of calculation of the wing attach load per position 

of joint that is the interface load of main wing and fuselage. The ratio of force 

transferred to the fuselage by joint located in the center is 27% which is the 

highest and as proceeding to the front and back, it can be confirmed that the load 

sharing was decreased. 
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Table 1 

Wing Attach Load Distributions (+9g, Ultimate) 

Location Fy (lbs) Fz (lbs) 

M (in-lbs) 

ref. 

WL 112.0 

%

 M 

%

V 

Spar#02 

U

pr 
-122,434 -7,401 

1,912,464 
1

8.2% 

1

3.4% L

wr 
146,672 -12,665 

Spar#04 

U

pr 
-188,214 -13,880 

2,495,536 
2

3.8% 

2

2.5% L

wr 
171,576 -19,806 

Spar#06 

U

pr 
-221,762 -11,589 

2,819,099 
2

6.8% 

2

5.3% L

wr 
191,825 -26,297 

Spar#08 

U

pr 
-152,000 -1,384 

2,110,710 
2

0.1% 

2

1.8% L

wr 
164,832 -31,333 
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Spar 

#10 

U

pr 
-80,513 2,423 

1,162,248 
1

1.1% 

1

7.1% L

wr 
90,017 -28,068 

 

Strength analysis results of FE model. 

The analysis conducted from two different perspectives in order to 

evaluate the strength of each structure. First, 0.25" diameter of open hole strength 

on the in-plane load of each laminate panel was evaluated. And then, the ply 

strength was evaluated though stress analysis per each ply consisting composite 

laminate panel. The ply strength evaluation was conducted on both max. strain 

criteria. The value of margin of safety on the open hole strength is calculated as 

below. 

 

(4) 

The values of open hole allowable stress are used as in Table 2. 

, ,

,

1, 1,

. min

1

tension allowable openhole compression allowable openhole

tension average compression average

shear allowable openhole

shear average

Stress Stress

Stress Stress
M S

Stress

Stress

 
− − 

 
=

 
 −
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11 22 12

11, 22, 12,

. ( ) max , ,

1
. 1 1

.

allowalbe allowalbe allowalbe

F I Failure Index

M S or SR
F I

  

  

 
=   

 

= − −

Table 2 

Open Hole Allowable Stress (265℉, 1.2% Wet) 

% Lay-up Tension (psi) 
Comp. 

(psi) 
Shear (psi) 

[30% 60% 10%] 30800 19600 15700 

[50% 40% 10%] 46800 25000 13700 

 

The strength ratio is defined as below and each value can be derived from 

failure index formula and as for the NASTRAN, the analysis solver, the strength 

ratio value calculated from inside can be printed. 

 

(5) 

 

 

The value of ply strength margin of safety by max. strain criteria is 

calculated as below. 

 

 

 

 

                                       (6) 

     

 

The values of ply strength allowable used for analysis are as in table 3. 

( )
Allowable stress

Strength Ratio SR
Calculated stress

=

22

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 6 [2019], Iss. 2, Art. 1

https://commons.erau.edu/ijaaa/vol6/iss2/1
DOI: https://doi.org/10.15394/ijaaa.2019.1301



Table 3 

T-300/5208 Tape at 227℉ Wet (1.2%) 

Properties Ult. Strain (B-Allow.) Ult. Stress (B-Allow.) 

E11 (psi) 19152158 ε1T,alw (in/in) 0.00775 XT (psi) 148297 

E22 (psi) 1159639 ε2T,alw (in/in) 
0.00087 

(0.005447) 
YT (psi) 

1009 

(6317) 

G12 (psi) 542772 γ12,alw (in/in) 0.01163 S (psi) 3555 

G12s (psi) 305593 ε1C,alw (in/in) -0.00547 XC (psi) -104841 

Nu12 0.3 ε2C,alw (in/in) -0.01108 YC (psi) -12845 

( ) : quasi-iso laminate tests result 

 

Figure 12-14 shows the margin of safety calculated on upper/lower skin. 

As same as in aforementioned figures, the highlighted in read is the area of 

showing the margin of minus. 
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Figure 12. Open Hole Strength M.S. – Upper Skin (+9g). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Open Hole Strength M.S. – Lower Skin (+9g). 

 

As for the upper and lower skin which are linked to the wing attach fitting 

show the minus margin as in open hole strength perspective. This part is actually 

the one where a lot of loads have to be transferred, the local reinforcement is 

required. 
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Figure 14. Open Hole Strength M.S. – Spars (+9g) 

 

 

Verification of Aircraft Wing FE Model 

The structures of aircraft are manufactured by each design requirements 

and its conformity is verified by tests. In this paragraph, the whiff tree was 

constructed on the main wing specimen, by applying the 100% design load and 

150% design load, the damage would not be created during tests and verified 

analysis results. The specimen was installed by connecting the shackle and tube to 

the fixture, this part is the one where the actual wings are assembled to the aircraft 

fuselage. Once installed, the grip was fixed on the aircraft wings and connected 

the whiff tree. The grip was intended for transferring load to the skin and slat 

when adding load, the rubber pad was installed at the inside of grip so that it can 

contact to the specimen. 

In addition, the load was compensated so that the load could not be 

transferred to the specimen due to the weight and dead load. The detailed 

configuration of test fixture can be found in Figure 15. This experiment is an 

example to verify the full-scaled finite element model and its analysis result was 

compared with the amount of deflection measured in the structural test on several 

static loads conducted previously. 
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Figure 15. Configuration of whiffle tree and wing specimen. 
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The compared result on amount of deflection was shown in Figure 16 and 

as for the strain gage, three types of strain gages, Rosette, Vesette, and Axial, were 

fixed on the measuring part and test required part and extracted test result. As a 

result of test, it can be confirmed that the errors of FEM and Test were created 

within ±4%. 

Figure16. Comparison of test results with prediction of wing deflection. 

 

Conclusions 

 

In this paper, the internal force calculation based on the finite element 

method, load path evaluation and initial sizing method were presented in order to 

conduct the structural analysis of multi-spar type of military aircraft at the basic 

design phase. 

In the finite element model, the one-dimensional rod element without 

bending stiffness, two-dimensional membrane and shear panel elements were 

basically facilitated. As for the initial sizing, the margin of safety of each structure 
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set to be more than 0 within the margin of error based on allowable load to all 

load cases and the initial sizing system was established by iterated calculation of 

structural analysis solver. 

In addition, the internal loads of each structure including the load of wings 

and fuselage, flaperon and hinge load and moment of leading-edge flap from the 

stress level of each finite element were calculated. 

Also, it was verified that no permanent deformation on the specimen 

which is the test requirement on design load by verification test of main wing 

structure. Prior to reaching to the ultimate load, it was proved that there was any 

fracture on the specimen so that the design was validated. 

The finite element modeling and initial sizing methods presented in this 

paper are part of researches on development of computational structural analysis 

methods and standardization and expected to be facilitated as a basic data for 

structural analysis of various aircraft in the future. 
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