4,658 research outputs found
Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations
Recent advances in smart contact lenses are essential to the realization of medical applications and vision imaging for augmented reality through wireless communication systems. However, previous research on smart contact lenses has been driven by a wired system or wireless power transfer with temporal and spatial restrictions, which can limit their continuous use and require energy storage devices. Also, the rigidity, heat, and large sizes of conventional batteries are not suitable for the soft, smart contact lens. Here, we describe a human pilot trial of a soft, smart contact lens with a wirelessly rechargeable, solid-state supercapacitor for continuous operation. After printing the supercapacitor, all device components (antenna, rectifier, and light-emitting diode) are fully integrated with stretchable structures for this soft lens without obstructing vision. The good reliability against thermal and electromagnetic radiations and the results of the in vivo tests provide the substantial promise of future smart contact lenses
The Globular Cluster System of M60 (NGC 4649). II. Kinematics of the Globular Cluster System
We present a kinematic analysis of the globular cluster (GC) system in the
giant elliptical galaxy (gE) M60 in the Virgo cluster. Using the photometric
and spectroscopic database of 121 GCs (83 blue GCs and 38 red GCs), we have
investigated the kinematics of the GC system. We have found that the M60 GC
system shows a significant overall rotation. The rotation amplitude of the blue
GCs is slightly smaller than or similar to that of the red GCs, and their
angles of rotation axes are similar. The velocity dispersions about the mean
velocity and about the best fit rotation curve for the red GCs are marginally
larger than those for the blue GCs. Comparison of observed stellar and GC
velocity dispersion profiles with those calculated from the stellar mass
profile shows that the mass-to-light ratio should be increased as the
galactocentric distance increases, indicating the existence of an extended dark
matter halo. The entire sample of GCs in M60 is found to have a tangentially
biased velocity ellipsoid unlike the GC systems in other gEs. Two subsamples
appear to have different velocity ellipsoids. The blue GC system has a modest
tangentially biased velocity ellipsoid, while the red GC system has a modest
radially biased or an isotropic velocity ellipsoid. From the comparison of the
kinematic properties of the M60 GC system to those of other gEs (M87, M49, NGC
1399, NGC 5128, and NGC 4636), it is found that the velocity dispersion of the
blue GC system is similar to or larger than that of the red GC system except
for M60, and the rotation of the GC system is not negligible. The entire sample
of each GC system shows an isotropic velocity ellipsoid except for M60, while
the subsamples show diverse velocity ellipsoids. We discuss the implication of
these results for the formation models of the GC system in gEs.Comment: 48 pages, 16 figures. To appear in Ap
An endophyte Paenibacillus dendritiformis strain APL3 promotes Amaranthus polygonoides L. sprout growth and their extract inhibits food-borne pathogens
Green leafy vegetables are rich sources of antioxidants and minerals, which prevent food-borne pathogen infections during our diet. This study was aimed to isolate and identify the plant growth-promoting endophytic bacterium from several plant species to enhance the growth of Amaranthus polygonoides L. and their antimicrobial potential against food-borne pathogens. Seven endophytic bacterial isolates were tested on two Amaranthus species to identify the suitable beneficial bacterium. The antioxidants capacity and antimicrobial activity of bacterial isolate (APL3) treated plants were analyzed. The bacterial isolate, APL3 showed a significantly higher growth of A. polygonoides L. than other isolates. It was identified as Paenibacillus dendritiformis strain APL3 by 16S rRNA gene sequencing and phylogenetic analysis. The endophyte (APL3) treated A. polygonoides L. sprouts had higher antioxidants potentials and significantly inhibited the growth of Escherichia coli, Salmonella sp., Staphylococcus sp. and Pseudomonas sp. The results of the present study suggest that utilization of P. dendritiformis strain APL3 triggers the growth of A. polygonoides L. and induces metabolic changes in plants to improve their antimicrobial properties to prevent foodborne pathogens
Existence of a critical point in the phase diagram of the ideal relativistic neutral Bose gas
We explore the phase transitions of the ideal relativistic neutral Bose gas
confined in a cubic box, without assuming the thermodynamic limit nor
continuous approximation. While the corresponding non-relativistic canonical
partition function is essentially a one-variable function depending on a
particular combination of temperature and volume, the relativistic canonical
partition function is genuinely a two-variable function of them. Based on an
exact expression of the canonical partition function, we performed numerical
computations for up to hundred thousand particles. We report that if the number
of particles is equal to or greater than a critical value, which amounts to
7616, the ideal relativistic neutral Bose gas features a spinodal curve with a
critical point. This enables us to depict the phase diagram of the ideal Bose
gas. The consequent phase transition is first-order below the critical pressure
or second-order at the critical pressure. The exponents corresponding to the
singularities are 1/2 and 2/3 respectively. We also verify the recently
observed `Widom line' in the supercritical region.Comment: 1+25 pages, 6 B/W figures: Comment on the Widom line added. Minor
improvement. Version to appear in `New Journal of Physics
AGV Trajectory Control Based on Laser Sensor Navigation
Autonomous Guided Vehicle Systems (AGVs) are used to transport goods and products in manufacturing fields where navigation can be done in a structured environment. In order to track the given trajectory, a tracking control based on Lyapunov stability theory is introduced. The use of the nonlinear Lyapunov technique provides robustness for load disturbance and sensor noise. To apply Lyapunov\u27s theorem, the kinematic model of AGV is given. To recognize its position in indoor environment, in this paper, a laser sensor device NAV200 is used to detect the AGV position in real-time. For simulation and experiment, software and hardware are described. The AGV consists of 4 wheels with two passive wheels and two driving wheels. A controller is developed based on industrial computer. The effectiveness of the proposed controller is proved by simulation and experimental results.[AGV Trajectory Control, Laser Sensor Navigation
Possible glass-like random singlet magnetic state in 1T-TaS2
Two-dimensional layered transition-metal-dichalcogenide compound 1T-TaS2
shows the rare coexistence of charge density wave (CDW) and electron
correlation driven Mott transition. In addition, atomic-cluster spins on the
triangular lattice of the CDW state of 1T-TaS2 give rise to the possibility of
the exotic spin-singlet state in which quantum fluctuations of spins are strong
enough to prevent any long range magnetic ordering down to absolute zero ( 0
K). We present here the evidences of a glass-like random singlet magnetic state
in 1T-TaS2 at low temperatures through a study of temperature and time
dependence of magnetization. Comparing the experimental results with a
representative canonical spin-glass system Au(1.8%Mn), we show that this
glass-like state is distinctly different from the well established canonical
spin-glass state.Comment: 11 pages, 6 figure
Wide-Field Survey of Globular Clusters in M31. I. A Catalog of New Clusters
We present the result of a wide-field survey of globular clusters (GCs) in
M31 covering a 3deg x 3deg field c. We have searched for GCs on CCD images
taken with Washington CMT1 filters at the KPNO 0.9 m telescope using steps: (1)
inspection of morphological parameters given by the SExtractor package such as
stellarity, full maximum, and ellipticity; (2) consulting the spectral types
and radial velocities obtained from spectra takena spectrograph at the WIYN 3.5
m telescope; and (3) visual inspection of the images of each object. We have
and GC candidates, of which 605 are newly found GCs and GC candidates and 559
are previously known GCs. Amoects there are 113 genuine GCs, 258 probable GCs,
and 234 possible GCs, according to our classification critee known objects
there are 383 genuine GCs, 109 probable GCs, and 67 possible GCs. In total
there are 496 genprobable GCs and 301 possible GCs. Most of these newly found
GCs have T1 magnitudes of 17.5 - 19.5 mag, [17.9 < V < 19.9 mag assuming (C-T1)
~ 1.5], and (C-T1) colors in the range 1 - 2.Comment: accepted by AJ, using emulateapj.cl
A single-ion conducting covalent organic framework for aqueous rechargeable Zn-ion batteries
Despite their potential as promising alternatives to current state-of-the-art lithium-ion batteries, aqueous rechargeable Zn-ion batteries are still far away from practical applications. Here, we present a new class of single-ion conducting electrolytes based on a zinc sulfonated covalent organic framework (TpPa-SO3Zn0.5) to address this challenging issue. TpPa-SO3Zn0.5 is synthesised to exhibit single Zn2+ conduction behaviour via its delocalised sulfonates that are covalently tethered to directional pores and achieve structural robustness by its beta-ketoenamine linkages. Driven by these structural and physicochemical features, TpPa-SO3Zn0.5 improves the redox reliability of the Zn metal anode and acts as an ionomeric buffer layer for stabilising the MnO2 cathode. Such improvements in the TpPa-SO3Zn0.5-electrode interfaces, along with the ion transport phenomena, enable aqueous Zn-MnO2 batteries to exhibit long-term cyclability, demonstrating the viability of COF-mediated electrolytes for Zn-ion batteries
- âŚ