13 research outputs found

    Fault heterogeneity and earthquake scaling

    Get PDF

    Tidal stress triggering of earthquakes in Southern California

    Get PDF
    We analyse the influence of the solid Earth tides and ocean loading on the occurrence time of Southern California earthquakes. For each earthquake, we calculate tidal Coulomb failure stress and stress rate on a fault plane that is assumed to be controlled by the orientation of the adjacent fault. To reduce bias when selecting data for testing the tide-earthquake relationship, we create four earthquake catalogues containing events within 1, 1.5, 2.5 and 5 km of nearest faults. We investigate the difference in seismicity rates at times of positive and negative tidal stresses/stress rates given three different cases. We consider seismicity rates during times of positive versus negative stress and stress rate, as well as 2 and 3 hr surrounding the local tidal stress extremes. We find that tidal influence on earthquake occurrence is found to be statistically non-random only in close proximity to tidal extremes meaning that magnitude of tidal stress plays an important role in tidal triggering. A non-random tidal signal is observed for the reverse events. Along with a significant increase in earthquake rates around tidal Coulomb stress maxima, the strength of tidal correlation is found to be closely related to the amplitude of the peak tidal Coulomb stress (τp). The most effective tidal triggering is found for τp ≄ 1 kPa, which is much smaller than thresholds suggested for static and dynamic triggering of aftershocks.Magda Bucholc and Sandy Steac

    Near-field propagation of tsunamis from megathrust earthquakes

    Get PDF
    We investigate controls on tsunami generation and propagation in the near-field of great megathrust earthquakes using a series of numerical simulations of subduction and tsunamigenesis on the Sumatran forearc. The Sunda megathrust here is advanced in its seismic cycle and may be ready for another great earthquake. We calculate the seafloor displacements and tsunami wave heights for about 100 complex earthquake ruptures whose synthesis was informed by reference to geodetic and stress accumulation studies. Remarkably, results show that, for any near-field location: (1) the timing of tsunami inundation is independent of slip-distribution on the earthquake or even of its magnitude, and (2) the maximum wave height is directly proportional to the vertical coseismic displacement experienced at that location. Both observations are explained by the dominance of long wavelength crustal flexure in near-field tsunamigenesis. The results show, for the first time, that a single estimate of vertical coseismic displacement might provide a reliable short-term forecast of the maximum height of tsunami waves

    Indonesian earthquake: Earthquake risk from co-seismic stress.

    Get PDF
    Following the massive loss of life caused by the Sumatra-Andaman earthquake in Indonesia and its tsunami, the possibility of a triggered earthquake on the contiguous Sunda trench subduction zone is a real concern. We have calculated the distributions of co-seismic stress on this zone, as well as on the neighbouring, vertical strike-slip Sumatra fault, and find an increase in stress on both structures that significantly boosts the already considerable earthquake hazard posed by them. In particular, the increased potential for a large subduction-zone event in this region, with the concomitant risk of another tsunami, makes the need for a tsunami warning system in the Indian Ocean all the more urgent.John McCloskey, Suleyman S.Nalbant, Sandy Steac

    Earthquake risk on the Sunda trench

    Get PDF
    On 28 March 2005 the Sunda megathrust in Indonesia ruptured again, producing another great earthquake three months after the previous one. The rupture was contiguous with that of the December 2004 Sumatra–Andaman earthquake, and is likely to have been sparked by local stress, although the triggering stresses at its hypocentre were very small — of the order of just 0.1 bar. Calculations show that stresses imposed by the second rupture have brought closer to failure the megathrust immediately to the south, under the Batu and Mentawai islands, and have expanded the area of increased stress on the Sumatra fault. Palaeoseismologic studies show that the Mentawai segment of the Sunda megathrust is well advanced in its seismic cycle and is therefore a good candidate for triggered failure

    The Forecasting Skill of Physics‐Based Seismicity Models during the 2010–2012 Canterbury, New Zealand, Earthquake Sequence

    Get PDF
    The static coulomb stress hypothesis is a widely known physical mechanism for earthquake triggering and thus a prime candidate for physics-based operational earthquake forecasting (OEF). However, the forecast skill of coulomb-based seismicity models remains controversial, especially compared with empirical statistical models. A previous evaluation by the Collaboratory for the Study of Earthquake Predictability (CSEP) concluded that a suite of coulomb-based seismicity models were less informative than empirical models during the aftershock sequence of the 1992 Mw 7.3 Landers, California, earthquake. Recently, a new generation of coulomb-based and coulomb/statistical hybrid models were developed that account better for uncertainties and secondary stress sources. Here, we report on the performance of this new suite of models compared with empirical epidemic-type aftershock sequence (ETAS) models during the 2010-2012 Canterbury, New Zealand, earthquake sequence. Comprising the 2010 M 7.1 Darfield earthquake and three subsequent M = 5:9 shocks (including the February 2011 Christchurch earthquake), this sequence provides a wealth of data (394 M = 3:95 shocks). We assessed models over multiple forecast horizons (1 day, 1 month, and 1 yr, updated after M = 5:9 shocks). The results demonstrate substantial improvements in the coulomb-based models. Purely physics-based models have a performance comparable to the ETAS model, and the two coulomb/statistical hybrids perform better or similar to the corresponding statistical model. On the other hand, an ETAS model with anisotropic (fault-based) aftershock zones is just as informative. These results provide encouraging evidence for the predictive power of coulomb-based models. To assist with model development, we identify discrepancies between forecasts and observations. © 2018 Seismological Society of America. All rights reserved
    corecore