15 research outputs found

    New investigations on the 32S(3He,d)33Cl reaction at 9.6 MeV bombarding energy

    Get PDF
    The 32S(3He,d)33Cl one-proton transfer reaction is a powerful tool to investigate the spectroscopy of low-lying states in the proton-rich 33Cl nucleus. However, the extraction of firm differential cross-section data at various angles to benchmark and constrain theoretical models is made challenging by the presence of competitive reactions on target contaminants. In this paper we report on arecent measurement using a new generation hodoscope of silicon detectors, capable to detect and identify emitted deuterons down to energies of the order of 2 MeV. The high angular segmentation of our hodoscope combined with a suitable target to control possible contaminants, allowed to unambiguously disentangle the contribution of various states in 33Cl, in particular the 2.352 MeV state lying just few tens of keV above the proton separation energy

    Study of the 32S(3He,d)33Cl one-proton transfer reaction with a new generation hodoscope

    Get PDF
    Abstract The 32S(3He,d)33Cl one-proton transfer reaction is a powerful tool to investigate the spectroscopy of low-lying states in the proton-rich 33Cl nucleus. However, the extraction of firm differential cross-section data at various angles, against which benchmarking theoretical models to correctly constrain the spectroscopy of 33Cl, is made challenging by the presence of competitive reaction products contaminating the detected energy spectra. We have recently measured the 32S(3He,d)33Cl reaction at 9.8 MeV incident energy by using a new generation hodoscope of silicon detectors, capable to detect and identify emitted deuterons down to energies of the order of 2 MeV. The high angular segmentation of our hodoscope allowed to unambiguously disentangle the contribution of one-proton transfer reactions in the ground state of 33Cl and in its 0.810 MeV, 2.352 MeV, 2.685 MeV, 2.846 MeV excited states from contaminant deuteron-emitting reactions. These data will be crucial to help to constrain JĎ€ and spectroscopic factor C 2 Sp values of low-lying 33Cl states, still ambiguous in the literature. The present status of the analysis is discussed in the paper

    Lights and (some) shadows in the comparison among experimental data of heavy ion collisionat Fermi energies and the dynamical model AMD

    Get PDF
    The simulation of heavy ion collisions in the Fermi energy region is a challenge for the theoretical models; in particular it is difficult to obtain a coherent description in all the impact parameter range and to reproduce all the experimental observables. In this contribution we will show the very good job done by the dynamical model AMD [1] followed by the statistical code GEMINI [2, 3] as an afterburner. The model is able to reproduce the main characteristics of peripheral and semiperipheral collisions, although some discrepancies still persist

    Lights and (some) shadows in the comparison among experimental data of heavy ion collisionat Fermi energies and the dynamical model AMD

    No full text
    The simulation of heavy ion collisions in the Fermi energy region is a challenge for the theoretical models; in particular it is difficult to obtain a coherent description in all the impact parameter range and to reproduce all the experimental observables. In this contribution we will show the very good job done by the dynamical model AMD [1] followed by the statistical code GEMINI [2, 3] as an afterburner. The model is able to reproduce the main characteristics of peripheral and semiperipheral collisions, although some discrepancies still persist

    Four α-particles as a final state of 16O* Quasi Projectile decay

    Get PDF
    Four α-particles as a final state of 16O* quasi-projectile decayproduced in peripheral 16O+12C reactions at 130 MeV is thoroughly studied. The differentdecay channels leading to the four α-particles final state are reconstructed by carrying out an event-by-event analysis of α correlations in the population of intermediate 8Be and 12C. Although small, a non negligible contribution due to 8Begs evaporation is found.A comparison between predictions of an accurate Hauser-Feshbach decay code and branching ratios of the different decay channels is performed. Significant deviations are observed, among these the Hoyle state population which is considerably lower than the one predicted according to the statistical model, thus suggesting possible structure effects in the Coulomb barrier and/or in the transmission coefficients

    Four α\alpha-particles as a final state of 16^{16}O* Quasi Projectile decay

    Get PDF
    International audienceFour α-particles as a final state of 16O* quasi-projectile decayproduced in peripheral 16O+12C reactions at 130 MeV is thoroughly studied. The differentdecay channels leading to the four α-particles final state are reconstructed by carrying out an event-by-event analysis of α correlations in the population of intermediate 8Be and 12C. Although small, a non negligible contribution due to 8Begs evaporation is found.A comparison between predictions of an accurate Hauser-Feshbach decay code and branching ratios of the different decay channels is performed. Significant deviations are observed, among these the Hoyle state population which is considerably lower than the one predicted according to the statistical model, thus suggesting possible structure effects in the Coulomb barrier and/or in the transmission coefficients

    New investigations on the

    No full text
    The 32S(3He,d)33Cl one-proton transfer reaction is a powerful tool to investigate the spectroscopy of low-lying states in the proton-rich 33Cl nucleus. However, the extraction of firm differential cross-section data at various angles to benchmark and constrain theoretical models is made challenging by the presence of competitive reactions on target contaminants. In this paper we report on arecent measurement using a new generation hodoscope of silicon detectors, capable to detect and identify emitted deuterons down to energies of the order of 2 MeV. The high angular segmentation of our hodoscope combined with a suitable target to control possible contaminants, allowed to unambiguously disentangle the contribution of various states in 33Cl, in particular the 2.352 MeV state lying just few tens of keV above the proton separation energy

    New investigations on the 32S(3He,d)33Cl reaction at 9.6 MeV bombarding energy

    Get PDF
    The 32S(3He,d)33Cl one-proton transfer reaction is a powerful tool to investigate the spectroscopy of low-lying states in the proton-rich 33Cl nucleus. However, the extraction of firm differential cross-section data at various angles to benchmark and constrain theoretical models is made challenging by the presence of competitive reactions on target contaminants. In this paper we report on arecent measurement using a new generation hodoscope of silicon detectors, capable to detect and identify emitted deuterons down to energies of the order of 2 MeV. The high angular segmentation of our hodoscope combined with a suitable target to control possible contaminants, allowed to unambiguously disentangle the contribution of various states in 33Cl, in particular the 2.352 MeV state lying just few tens of keV above the proton separation energy

    Comparative study of four reactions at onset of pre-equilibrium emission

    Get PDF
    The study of the emitted particles, comparing pre-equilibrium and thermal components, is a useful tool to examine the nuclear structure of emitters. Possible clustering effects, which may change the expected decay chain probability, could be highlighted on the competition between different reaction mechanisms. The NUCL-EX collaboration (INFN, Italy) has carried out an extensive research campaign on pre-equilibrium emission of light charged particles from hot nuclei. In this framework, the reactions 16O+30Si, 18O+28Si, 19F+27Al at 7 AMeV and 16O+30Si at 8 AMeV have been carried out using the GARFIELD+RCo array at Legnaro National Laboratories. Some anomalies in the α-particle emission channels have been evidenced in the measurement reported above, showing in an exclusive way the observed effects related to the entrance channels. The experimental results are compared to model prediction, for which the same filtering and complete event selection have been applied
    corecore