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Abstract. Four α-particles as a final state of 16O∗ quasi-projectile decay produced in peripheral 16O+12C reac-
tions at 130 MeV is thoroughly studied. The different decay channels leading to the four α-particles final state
are reconstructed by carrying out an event-by-event analysis of α correlations in the population of intermediate
8Be and 12C. Although small, a non negligible contribution due to 8Begs evaporation is found. A comparison
between predictions of an accurate Hauser-Feshbach decay code and branching ratios of the different decay
channels is performed. Significant deviations are observed, among these the Hoyle state population which is
considerably lower than the one predicted according to the statistical model, thus suggesting possible structure
effects in the Coulomb barrier and/or in the transmission coefficients.

1 Introduction

The aim of this experimental campaign carried out by the
NUCL-EX collaboration is investigating the properties of
light nuclei [1]. In this contribution we will present results
of peripheral 16O+12C collisions with the decay of the ex-
cited 16O∗ Quasi Projectile (QP) in a final state of four α-
particles. A comparison with the predictions of a statistical
decay code (HF�) based on Hauser-Feshbach formalism
and including all the discrete levels of light nuclei, taken
from the NUDAT2 database [2], was made. Agreement or
disagreement with statistical decay code could be a hint
of the importance of non statistical effects. The analysis
explores the two channels of the decay [3]: the first fore-
sees the formation of two 8Begs which both decay in two
α particles

16O∗ →8 Begs +
8 Begs → α + α + α + α, (1)

the second consists in the emission of an α-particle leav-
ing a 12C∗ as a residue, which in turn decays in three α-
particles, through a 8Be intermediate state.

16O∗ →12 C∗ + α→8 Begs + α + α→ α + α + α + α (2)

where 12C∗ can be in the Hoyle state (0+2 , 7.65 MeV) [4]
or in a 3− excited state at 9.64 MeV.

2 The experiment and the event selection

Measurements were carried out at the INFN laboratories
in Legnaro using a pulsed beam of 16O at 130 MeV [5].
The apparatus consists of GARFIELD, a multi-detector lo-
cated inside a large scattering chamber, coupled with the
Ring Counter (RCo), a three-stage annular detector with
a truncated cone geometry aimed for the detection at for-
ward angles [6]. ∆E-E correlation and fast-slow PSA tech-
niques were used for particle identification. The selec-
tion of events of interest has been performed by consider-
ing only events which feature four α-particles, in the final
state, detected at forward angles (by the RCo in 5◦ ÷ 17◦

angular range) and no product detected by GARFIELD
(30◦ ÷ 150◦).

3 Analysis

From energy and momentum conservation one obtains the
target and projectile excitation energy:

Etoti = Ebeam = Etot f =

4∑
i=1

Eαi + Erec + Eexct − Q (3)

where Eαi is kinetic energy of the ith α-particle, Eexct the
QT excitation energy, Q is the reaction Q-value and Erec is
the QT recoil energy.
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Taking into account also the energy loss in the target,
Erec turns out to be always lower than the threshold for 12C
detection.
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Figure 1. QT excitation energy as calculated in eq. (3).

In the energy spectrum of the QT, shown in Fig. 1, it is
possible to observe the corresponding peaks at the ground
state and first γ excited state at 4.4 MeV of the QT (12C)
nucleus. A tail to higher excitation energies can be seen as
well. The analysis presented here includes only the events
in which the QT remains in its ground state. However,
other analyses that consider the other QT excitation ener-
gies have been carried out [7]. In order to determine the
decay channel in two 8Begs, the relative energy of the pair
of α-particles providing the lowest value out of the four
is considered together with the relative energy of the two
complementary α-particles. The vertical red lines in Fig. 2
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Figure 2. Left panel: minimum relative energy of couples of
α-particles. Right panel: relative energy of the complementary
couple.

represent the selection performed in order to consider the
two relative energies corresponding to the ground state of
the 8Be. In this way, only events with the production of
two contemporary 8Begs are taken into account. This ac-
counts for 7.5 % of the total number of events with the QT
in the ground state.

To consider the events corresponding to the second
decay channel, from the excitation energy of three α-
particles out of the four, the excitation energy of carbon
is calculated as the minimum energy of the four combina-
tions. This amount is added to the energy of the fourth α
particle to obtain the excitation energy of the 16O.

In Fig. 3 we show the excitation energy of the 12C*.
The two excited carbon states (Hoyle 0+2 and 3− state,
labelled as C∗1 and C∗2) can be distinguished. The selection
of the data that fall within the 7.65 MeV or 9.64 MeV
peaks enables a separate analysis of the two decay

channels in which an excited carbon nucleus is formed.
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Figure 3. Excitation energy spectrum of 12C∗ in which 16O∗ de-
cays with the emission of an α particle.

The decay process with the formation of 12C in the
Hoyle state accounts for 32 % of the occurrences, whereas
the one with carbon in 3− state represents 49 %. This re-
sults in the preferential decay of 16O∗ through these decay
channels.

Finally, we have performed the comparison with the
HF� predictions where we considered the decay of a mix-
ing of excited levels with characteristics extracted from
experimental data. Table 1 shows the results of this com-
parison: the observed branching ratios differ significantly

Table 1. Experimental branching ratios of different reactions
compared to HF� predictions. C∗1 corresponds to the Hoyle state,

C∗2 to 9.64 MeV.

reaction EXP.(%) HF� (%)
12C(16O,8Begs+8Begs)12Cgs 7.5 20.8

12C(16O,12C∗1 + α)12Cgs 32.0 53.0
12C(16O,12C∗2 + α)12Cgs 49.0 19.3

background 11.5 6.8

from the theoretical ones, especially as far as Hoyle state is
concerned. A possible explanation might be the influence
of the well-known α-cluster structure of the Hoyle state on
the Coulomb barrier and the associated transmission coef-
ficients of the corresponding evaporation channel.
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