35 research outputs found
Morphologic Criteria of Lesion Activity in Neovascular Age-Related Macular Degeneration: A Consensus Article
Intravitreal antivascular endothelial growth factor drugs represent the current standard of care for neovascular age-related macular degeneration (nAMD). Individualized treatment regimens aim at obtaining the same visual benefits of monthly injections with a reduced number of injections and follow-up visits, and, consequently, of treatment burden. The target of these strategies is to timely recognize lesion recurrence, even before visual deterioration. Early detection of lesion activity is critical to ensure that clinical outcomes are not compromised by inappropriate delays in treatment, but questions remain on how to effectively monitor the choroidal neovascularization
(CNV) activity. To assess the persistence/recurrence of lesion activity in patients undergoing treatment for nAMD, an expert panel developed a decision algorithm based on the morphological features of CNV. After evaluating all current retinal imaging techniques, the panel identified optical coherent tomography as the most reliable tool to ascertain lesion activity when funduscopy is not obvious
LIME -- a gas TPC prototype for directional Dark Matter search for the CYGNO experiment
The CYGNO experiment aims at the development of a large gaseous TPC with
GEM-based amplification and an optical readout by means of PMTs and scientific
CMOS cameras for 3D tracking down to O(keV) energies, for the directional
detection of rare events such as low mass Dark Matter and solar neutrino
interactions. The largest prototype built so far towards the realisation of the
CYGNO experiment demonstrator is the 50 L active volume LIME, with 4 PMTs and a
single sCMOS imaging a 3333 cm\textsuperscript{2} area for 50 cm drift,
that has been installed in underground Laboratori Nazionali del Gran Sasso in
February 2022. We will illustrate LIME performances as evaluated overground in
Laboratori Nazionali di Frascati by means of radioactive X-ray sources, and in
particular the detector stability, energy response and energy resolution. We
will discuss the MC simulation developed to reproduce the detector response and
show the comparison with actual data. We will furthermore examine the
background simulation worked out for LIME underground data taking and
illustrate the foreseen expected measurement and results in terms of natural
and materials intrinsic radioactivity characterisation and measurement of the
LNGS underground natural neutron flux. The results that will be obtained by
underground LIME installation will be paramount in the optimisation of the
CYGNO demonstrator, since this is foreseen to be composed by multiple modules
with the same LIME dimensions and characteristics
Technical Design Report - TDR CYGNO-04/INITIUM
The aim of this Technical Design Report is to illustrate the technological choices foreseen to be implemented in the construction of the CYGNO-04 demonstrator, motivate them against the experiment physics goals of CYGNO-30 and demonstrate the financial sustainability of the project. CYGNO-04 represents PHASE 1 of the long term CYGNO roadmap, towards the development of large high precision tracking gaseous Time Projection Chamber (TPC) for directional Dark Matter searches and solar neutrino spectroscopy.
The CYGNO project1 peculiarities reside in the optical readout of the light produced during the amplification of the primary ionization electrons in a stack of triple Gas Electron Multipliers (GEMs), thanks to the nice scintillation properties of the chosen He:CF4 gas mixture. To this aim, CYGNO is exploiting the fast progress in commercial scientific Active Pixel Sensors (APS) development for highly performing sCMOS cameras, whose high granularity and sensitivity allow to significantly boost tracking, improve particle identification and lower the energy threshold. The X-Y track project obtained from the reconstruction of the sCMOS images is combined with a PMT measurement to obtain a full 3D track reconstruction.
In addition, several synergic R&Ds based on the CYGNO experimental approach are under development in the CYGNO collaboration (see Sec 2) to further enhance the light yield by means of electro luminescence after the amplification stage, to improve the tracking performances by exploiting negative ion drift operation within the INITIUM ERC Consolidator Grant, and to boost the sensitivity to O(GeV) Dark Matter masses by employing hydrogen rich target towards the development of PHASE 2 (see Sec. 1.2).
While still under optimization and subject to possible significant improvements, the CYGNO experimental approach performances and capabilities demonstrated so far with prototypes allow to foresee the development of an O(30) m3 experiment by 2026 for a cost of O(10) MEUROs. A CYGNO-30 experiment would be able to give a significant contribution to the search and study of Dark Matter with masses below 10 GeV/c2 for both SI and SD coupling. In case of a Dark Matter observation claim by other experiments, the information provided by a directional detector such as CYGNO would be fundamental to positively confirm the galactic origin of the allegedly detected Dark Matter signal. CYGNO-30 could furthermore provide the first directional measurement of solar neutrinos from the pp chain, possibly extending to lower energies the Borexino measurement2.
In order to reach this goal, the CYGNO project is proceeding through a staged approach. The PHASE 0 50 L detector (LIME, recently installed underground LNGS) will validate the full performances of the optical readout via APS commercial cameras and PMTs and the Montecarlo simulation of the expected backgrounds.
The full CYGNO-04 demonstrator will be realized with all the technological and material choices foreseen for CYGNO-30, to demonstrate the scalability of the experimental approach and the potentialities of the large PHASE 2 detector to reach the expected physics goals.
The first PHASE 1 design anticipated a 1 m3 active volume detector with two back-to-back TPCs with a central cathode and 500 mm drift length. Each 1 m2 readout area would have been composed by 9 + 9 readout modules having the LIME PHASE 0 dimensions and layout. Time (end of INITIUM project by March 2025) and current space availability at underground LNGS (only Hall F) forced the rescaling of the PHASE 1 active volume and design to a 0.4 m3, hence CYGNO-04. CYGNO-04 will keep the back-to-back double TPC layout with 500 mm drift length each, but with an 800 x 500 mm2 readout area covered by a 2 + 2 modules based on LIME design. The reduction of the detector volume has no impact on the technological objectives of PHASE 1, since the modular design with central cathode, detector materials and shieldings and auxiliary systems are independent of the total volume. The physics reach (which is a byproduct of PHASE 1 and NOT an explicit goal) will be only very partially reduced (less than a factor 2 overall) since a smaller detector volume implies also a reduced background from internal materials radioactivity. In addition, the cost reduction of CYGNO-04 of about 1â3 with respect to CYGNO-1 illustrated in the CDR effectively makes the overall project more financially sustainable (see CBS in the last section).
In summary this document will explain:
the physical motivation of the CYGNO project and the technical motivations of the downscale of the PHASE 1 to CYGNO-04, 400 liters of active volume, with respect to the demonstrator presented in the CDR;
the results of R&D and the Montecarlo expectations for PHASE 0;
the technical choices, procedures and the executive drawings of CYGNO-04 in the Hall F of the LNGS;
safety evaluations and the interference/request to the LNGS services;
Project management, WBS/WBC, WP, GANTT, ec
The CYGNO Experiment
The search for a novel technology able to detect and reconstruct nuclear and
electron recoil events with the energy of a few keV has become more and more
important now that large regions of high-mass dark matter (DM) candidates have
been excluded. Moreover, a detector sensitive to incoming particle direction
will be crucial in the case of DM discovery to open the possibility of studying
its properties. Gaseous time projection chambers (TPC) with optical readout are
very promising detectors combining the detailed event information provided by
the TPC technique with the high sensitivity and granularity of
latest-generation scientific light sensors. The CYGNO experiment (a CYGNus
module with Optical readout) aims to exploit the optical readout approach of
multiple-GEM structures in large volume TPCs for the study of rare events as
interactions of low-mass DM or solar neutrinos. The combined use of
high-granularity sCMOS cameras and fast light sensors allows the reconstruction
of the 3D direction of the tracks, offering good energy resolution and very
high sensitivity in the few keV energy range, together with a very good
particle identification useful for distinguishing nuclear recoils from
electronic recoils. This experiment is part of the CYGNUS proto-collaboration,
which aims at constructing a network of underground observatories for
directional DM search. A one cubic meter demonstrator is expected to be built
in 2022/23 aiming at a larger scale apparatus (30 m--100 m) at a later
stage
Combined therapy (intravitreal bevacizumab plus verteporfin photodynamic therapy) versus intravitreal bevacizumab monotherapy for choroidal neovascularization due to age-related macular degeneration: a 1-year follow-up study
To assess the efficacy and safety of combined intravitreal bevacizumab and low-fluency-rate photodynamic therapy (PDT) in the treatment of choroidal neovascularization (CNV) associated with age-related macular degeneration (AMD) and to compare it with intravitreal bevacizumab monotherapy
Combined therapy with bevacizumab and photodynamic therapy for myopic choroidal neovascularization: A one-year follow-up controlled study
7noAIM:
To evaluate the efficacy and safety of a combined treatment for myopic choroidal neovascularization (CNV) using photodynamic therapy (PDT) and intravitreal bevacizumab and to compare it with intravitreal bevacizumab monotherapy.
METHODS:
Thirty-four eyes with angiographic evidence of myopic CNV were randomly divided into two groups: 17 were treated with one intravitreal bevacizumab injection (1.25 mg) and low-fluence-rate PDT within seven days of the injection (Group A). The other 17 received monotherapy with bevacizumab injections (Group B). Clinical evidence of complications, best corrected visual acuity (BCVA) and fluorescein leakage were evaluated. BCVA and optical coherence tomography (OCT) were evaluated monthly. The timepoints follow-up was established at 6 and 12mo. All patients were retreated following a PRN protocol.
RESULTS:
A total of 34 eyes of 34 patients (26 women and 8 men) with a mean age of 62.35 years were included. In Group A (17 eyes) the mean BCVA increased from 0.55±0.13 logMAR before the treatment to 0.40±0.09 logMAR at the 12mo follow-up (P<0.01). In Group B (17 eyes) the mean BCVA increased from 0.60±0.11 logMAR before the treatment to 0.55±0.12 logMAR at the 12mo follow-up (P<0.01). There was no statistically significant difference between the two groups in terms of LogMar visual acuity. In Group A the mean number of combined treatments was 1.8±0.11 per patient; in Group B the mean number of intravitreal bevacizumab injections was 3.1±0.08 per patient. The number of treatments was significantly fewer in Group A (P<0.01). No local or systemic side effects occurred among any of the patients treated in this study.
CONCLUSION:
The combination of anti-angiogenic injections and PDT appears to be a safe and effective option for myopic CNV treatment and allows for a significant reduction of intravitreal injections.
KEYWORDS:
bevacizumab; combined therapy; myopia; neovascularization; photodynamic therapynoneopenSaviano, Sandro; Piermarocchi, Rita; Leon, Pia E; Mangogna, Alessandro; Zanei, Andrea; Sc, Fabiano Cavarzeran; Tognetto, DanieleSaviano, Sandro; Piermarocchi, Rita; Leon, Pia E; Mangogna, Alessandro; Zanei, Andrea; Sc, Fabiano Cavarzeran; Tognetto, Daniel
Spontaneous or secondary to intravitreal injections of anti-angiogenic agents retinal pigment epithelial tears in age-related macular degeneration
To evaluate the visual function evolution of retinal pigment epithelial (RPE) tears in patients with age-related macular degeneration (AMD) according to type of occurrence [spontaneous or secondary to anti-vascular endothelial growth factor (anti-VEGF) injection] and the topographic location of the tear after a two-year follow-up period