16 research outputs found

    Circadian Regulation of Colon Cancer Stem Cells: Implications for Therapy

    Get PDF
    The presence of cancer stem cells (CSCs) in colorectal cancer (CRC) has been associated with tumor initiation, metastasis, relapse, and resistance to chemotherapy and radiotherapy. Therefore, a better knowledge of the molecular mechanisms involved in the regulation of CSCs is required to develop treatments that are more effective. Like normal cells, cancer cells contain molecular clocks that generate circadian rhythms in gene expression and metabolic activity. Disruption of circadian rhythms has been linked to increased cancer risk, chemoresistance, and progression in CRC. CSCs also generate rhythms, which could be exploited with a chronopharmacological approach. Although the regulation of the expression of circadian rhythm genes appears to be mediated mainly by transcription–translation feedback loops, the existence of forms of nontranscriptional regulation has been demonstrated. Particularly, microRNAs (miRNA) and SIRT1 are significant players in regulating various aspects of the circadian clock function. Furthermore, miRNA acts as a regulator of cancer progression by regulating the CSC characteristics through SIRT1. These findings led us to hypothesize that there is a circadian rhythm of CSC markers regulated by miRNAs in CRC with SIRT1 acting as a mediator of miRNA activity. The pharmacological regulation of SIRT1, and therefore of the circadian machinery, could result in antiproliferative effects and increased sensitivity to antitumor treatments in CRC

    Circadian Genes as Therapeutic Targets in Pancreatic Cancer

    Get PDF
    JL was supported by the Nicolás Monardes Program from the Andalusian Health Service (C-0033-2015). This work was supported by a research grant from the Instituto de Salud Carlos III-FEDER (PI18/01947).Pancreatic cancer is one of the most lethal cancers worldwide due to its symptoms, early metastasis, and chemoresistance. Thus, the mechanisms contributing to pancreatic cancer progression require further exploration. Circadian rhythms are the daily oscillations of multiple biological processes regulated by an endogenous clock. Several evidences suggest that the circadian clock may play an important role in the cell cycle, cell proliferation and apoptosis. In addition, timing of chemotherapy or radiation treatment can influence the efficacy and toxicity treatment. Here, we revisit the studies on circadian clock as an emerging target for therapy in pancreatic cancer. We highlight those potential circadian genes regulators that are commonly affected in pancreatic cancer according to most recent reports.Nicolás Monardes Program from the Andalusian Health Service (C-0033-2015)Instituto de Salud Carlos III-FEDER (PI18/01947

    Radiation and Stemness Phenotype May Influence Individual Breast Cancer Outcomes: The Crucial Role of MMPs and Microenvironment

    Get PDF
    Breast cancer is the most common cancer in women. Radiotherapy (RT) is one of the mainstay treatments for cancer but in some cases is not effective. Cancer stem cells (CSCs) within the tumor can be responsible for recurrence and metastasis after RT. Matrix metalloproteases (MMPs), regulated mainly by tissue inhibitors of metalloproteinases (TIMPs) and histone deacetylases (HDACs), may also contribute to tumor development by modifying its activity after RT. The aim of this work was to study the effects of RT on the expression of MMPs, TIMPs and HDACs on different cell subpopulations in MCF-7, MDA-MB-231 and SK-BR-3 cell lines. We assessed the in vitro expression of these genes in different 3D culture models and induced tumors in female NSG mice by orthotopic xenotransplants. Our results showed that gene expression is related to the cell subpopulation studied, the culture model used and the single radiation dose administered. Moreover, the crucial role played by the microenvironment in terms of cell interactions and CSC plasticity in tumor growth and RT outcome is also shown, supporting the use of higher doses (6 Gy) to achieve better control of tumor developmentThis research was funded by the FUNDACIÓN PROGRESO Y SALUD, Consejería de Igualdad, Salud y Políticas Sociales, Junta de Andalucía (PI-730), the INSTITUTO DE SALUD CARLOS III, Ministerio de Ciencia, Innovación y Universidades (PIE16-00045) and by the Chair “Doctors Galera-Requena in cancer stem cell research” (CMC-CTS963)

    AA-NAT, MT1 and MT2 Correlates with Cancer Stem-Like Cell Markers in Colorectal Cancer: Study of the Influence of Stage and p53 Status of Tumors

    Get PDF
    The characterization of colon cancer stem cells (CSCs) may help to develop novel diagnostic and therapeutic procedures. p53 loss increases the pool of CSCs in colorectal cancer (CRC). Recent reports suggest that the oncostatic effects of melatonin could be related to its ability to kill CSCs. Although there are no data linking the loss of p53 function and melatonin synthesis or signaling in cancer, melatonin does activate the p53 tumor-suppressor pathway in this disease. In this work, we analyze whether the expression of melatonin synthesis and signaling genes are related to the expression of CSC markers and the implication of p53 status in samples from patients with CRC. Arylalkylamine N-acetyltransferase (AA-NAT), MT1, and MT2 expression decreased in tumor samples versus normal mucosa samples in mutated p53 (mtp53) tumors versus those with wild-type p53 (wtp53). Further, AA-NAT and MT2 expression were lower in advanced stages of the disease in wtp53 tumors. On the contrary, CD44 and CD66c expression was higher in tumor versus normal mucosa in wtp53 tumors. Additionally, CD44 expression was higher in advanced stages of the disease regardless of the p53 status. Patients with CD44highCD66chigh and wtp53 tumors in advanced stages showed low expression of AA-NAT and MT2 in wtp53 tumors. These results could indicate a possible interaction of these pathways in CRC.This research was supported by grants from the Consejería de Salud de la Junta de Andalucía (PI-0677-2013). Josefa León acknowledges sponsorship from the Servicio Andaluz de Salud “Nicolás Monardes” program

    Endothelin-1 as a Mediator of Heme Oxygenase-1-Induced Stemness in Colorectal Cancer: Influence of p53

    Get PDF
    Heme oxygenase-1 (HO-1) is an antioxidant protein implicated in tumor progression, metastasis, and resistance to therapy. Elevated HO-1 expression is associated with stemness in several types of cancer, although this aspect has not yet been studied in colorectal cancer (CRC). Using an in vitro model, we demonstrated that HO-1 overexpression regulates stemness and resistance to 5-FU treatment, regardless of p53. In samples from CRC patients, HO-1 and endothelin converting enzyme-1 (ECE-1) expression correlated significantly, and p53 had no influence on this result. Carbon monoxide (CO) activated the ECE-1/endothelin-1 (ET-1) pathway, which could account for the protumoral effects of HO-1 in p53 wild-type cells, as demonstrated after treatment with bosentan (an antagonist of both ETRA and ETRB endothelin-1 receptors). Surprisingly, in cells with a non-active p53 or a mutated p53 with gain-of-function, ECE-1-produced ET-1 acted as a protective molecule, since treatment with bosentan led to increased efficiency for spheres formation and percentage of cancer stem cells (CSCs) markers. In these cells, HO-1 could activate or inactivate certain unknown routes that could induce these contrary responses after treatment with bosentan in our cell model. However more research is warranted to confirm these results. Patients carrying tumors with a high expression of both HO-1 and ECE-1 and a non-wild-type p53 should be considered for HO-1 based-therapies instead of ET-1 antagonists-based ones.Instituto de Salud Carlos IIIFEDER (PI18/01947)MINECO grant (DPI2017-84439-R)Nicolás Monardes Program from the Andalusian Health Service (C-0033-2015)FPU2019 fellowship (FPU19/02269) from the Ministerio de Ciencia, Innovación y Universidades (Spain

    Matrix metalloproteases and TIMPs as prognostic biomarkers in breast cancer patients treated with radiotherapy: A pilot study

    Get PDF
    Breast cancer (BC) is the most common tumour in women and one of the most important causes of cancer death worldwide. Radiation therapy (RT) is widely used for BC treatment. Some proteins have been identified as prognostic factors for BC (Ki67, p53, E‐cadherin, HER2). In the last years, it has been shown that variations in the expression of MMPs and TIMPs may contribute to the development of BC. The aim of this pilot work was to study the effects of RT on different MMPs (‐1, ‐2, ‐3, ‐7, ‐8, ‐9, ‐10, ‐12 and ‐13) and TIMPs (‐1 to ‐4), as well as their relationship with other variables related to patient characteristics and tumour biology. A group of 20 BC patients treated with RT were recruited. MMP and TIMP serum levels were analysed by immunoassay before, during and after RT. Our pilot study showed a slight increase in the levels of most MMP and TIMP with RT. However, RT produced a significantly decrease in TIMP‐1 and TIMP‐3 levels. Significant correlations were found between MMP‐3 and TIMP‐4 levels, and some of the variables studied related to patient characteristics and tumour biology. Moreover, MMP‐9 and TIMP‐3 levels could be predictive of RT toxicity. For this reason, MMP‐3, MMP‐9, TIMP‐3 and TIMP‐4 could be used as potential prognostic and predictive biomarkers for BC patients treated with RT.FUNDACIÓN PROGRESO Y SALUD, Grant/Award Number: PI‐730; Instituto de Salud Carlos III, Grant/Award Number: PIE16‐00045; Oncología Básica y Clínica, Grant/Award Number: CTS‐20

    Hypermethylated 14-3-3-σ and ESR1 gene promoters in serum as candidate biomarkers for the diagnosis and treatment efficacy of breast cancer metastasis

    Get PDF
    Background: Numerous hypermethylated genes have been reported in breast cancer, and the silencing of these genes plays an important role in carcinogenesis, tumor progression and diagnosis. These hypermethylated promoters are very rarely found in normal breast. It has been suggested that aberrant hypermethylation may be useful as a biomarker, with implications for breast cancer etiology, diagnosis, and management. The relationship between primary neoplasm and metastasis remains largely unknown. There has been no comprehensive comparative study on the clinical usefulness of tumor-associated methylated DNA biomarkers in primary breast carcinoma and metastatic breast carcinoma. The objective of the present study was to investigate the association between clinical extension of breast cancer and methylation status of Estrogen Receptor1 (ESR1) and Stratifin (14-3-3-σ) gene promoters in disease-free and metastatic breast cancer patients. Methods: We studied two cohorts of patients: 77 patients treated for breast cancer with no signs of disease, and 34 patients with metastatic breast cancer. DNA was obtained from serum samples, and promoter methylation status was determined by using DNA bisulfite modification and quantitative methylation-specific PCR. Results: Serum levels of methylated gene promoter 14-3-3-σ significantly differed between Control and Metastatic Breast Cancer groups (P < 0.001), and between Disease-Free and Metastatic Breast Cancer groups (P < 0.001). The ratio of the 14-3-3-σ level before the first chemotherapy cycle to the level just before administration of the second chemotherapy cycle was defined as the Biomarker Response Ratio [BRR]. We calculated BRR values for the "continuous decline" and "rise-and-fall" groups. Subsequent ROC analysis showed a sensitivity of 75% (95% CI: 47.6 - 86.7) and a specificity of 66.7% (95% CI: 41.0 - 86.7) to discriminate between the groups for a cut-off level of BRR = 2.39. The area under the ROC curve (Z = 0.804 ± 0.074) indicates that this test is a good approach to post-treatment prognosis. Conclusions: The relationship of 14-3-3-σ with breast cancer metastasis and progression found in this study suggests a possible application of 14-3-3-σ as a biomarker to screen for metastasis and to follow up patients treated for metastatic breast cancer, monitoring their disease status and treatment response.This study was supported by a grant from the Ministerio de Ciencia e Innovación: SAF 2004-00889; JL Linares is supported by the Junta de Andalucía (P06-CTS-1385)

    Could radiotherapy effectiveness be enhanced by electromagnetic field treatment?

    Get PDF
    One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy.This study was supported by the Instituto de Salud Carlos III, Fondo de Investigación Sanitaria (PI08/0728, Fondos FEDER) to M.I. Núñez. F. Artacho-Cordón is supported by the Spanish Ministry of Science and Education (AP2012-2524). A grant from the Fundación Benéfica San Francisco Javier y Santa Cándida, University of Granada, to S. Ríos-Arrabal greatly aided this work. This research was also funded by the San Cecilio University Hospital, Granada
    corecore