35 research outputs found

    Care coordination experiences of people with traumatic brain injury and their family members in the 4-years after injury: a qualitative analysis

    Get PDF
    Title: Care coordination experiences of people with traumatic brain injury and their family members 4-years after injury: A qualitative analysis. Aim: To explore experiences of care coordination in the first 4-years after severe traumatic brain injury (TBI). Methods: A qualitative study nested within a population-based longitudinal cohort study. Eighteen semi-structured telephone interviews were conducted 48-months post-injury with six adults living with severe TBI and the family members of 12 other adults living with severe TBI. Participants were identified through purposive sampling from the Victorian State Trauma Registry. A thematic analysis was undertaken. Results: No person with TBI or their family member reported a case manager or care coordinator were involved in assisting with all aspects of their care. Many people with severe TBI experienced ineffective care coordination resulting in difficulty accessing services, variable quality in the timing, efficiency and appropriateness of services, an absence of regular progress evaluations and collaboratively formulated long-term plans. Some family members attempted to fill gaps in care, often without success. In contrast, effective care coordination was reported by one family member who advocated for services, closely monitored their relative, and effectively facilitated communication between services providers. Conclusion: Given the high cost, complexity and long-term nature of TBI recovery, more effective care coordination is required to consistently meet the needs of people with severe TBI.Sandra Braaf, Shanthi Ameratunga, Nicola Christie, Warwick Teague, Jennie Ponsford, Peter A. Cameron, Belinda J. Gabb

    Long-term health status and trajectories of seriously injured patients: A population-based longitudinal study

    Get PDF
    Improved understanding of the quality of survival of patients is crucial in evaluating trauma care, understanding recovery patterns and timeframes, and informing healthcare, social, and disability service provision. We aimed to describe the longer-term health status of seriously injured patients, identify predictors of outcome, and establish recovery trajectories by population characteristics.A population-based, prospective cohort study using the Victorian State Trauma Registry (VSTR) was undertaken. We followed up 2,757 adult patients, injured between July 2011 and June 2012, through deaths registry linkage and telephone interview at 6-, 12-, 24-, and 36-months postinjury. The 3-level EuroQol 5 dimensions questionnaire (EQ-5D-3L) was collected, and mixed-effects regression modelling was used to identify predictors of outcome, and recovery trajectories, for the EQ-5D-3L items and summary score. Mean (SD) age of participants was 50.8 (21.6) years, and 72% were male. Twelve percent (n = 333) died during their hospital stay, 8.1% (n = 222) of patients died postdischarge, and 155 (7.0%) were known to have survived to 36-months postinjury but were lost to follow-up at all time points. The prevalence of reporting problems at 36-months postinjury was 37% for mobility, 21% for self-care, 47% for usual activities, 50% for pain/discomfort, and 41% for anxiety/depression. Continued improvement to 36-months postinjury was only present for the usual activities item; the adjusted relative risk (ARR) of reporting problems decreased from 6 to 12 (ARR 0.87, 95% CI: 0.83-0.90), 12 to 24 (ARR 0.94, 95% CI: 0.90-0.98), and 24 to 36 months (ARR 0.95, 95% CI: 0.95-0.99). The risk of reporting problems with pain or discomfort increased from 24- to 36-months postinjury (ARR 1.06, 95% CI: 1.01, 1.12). While loss to follow-up was low, there was responder bias with patients injured in intentional events, younger, and less seriously injured patients less likely to participate; therefore, these patient subgroups were underrepresented in the study findings.The prevalence of ongoing problems at 3-years postinjury is high, confirming that serious injury is frequently a chronic disorder. These findings have implications for trauma system design. Investment in interventions to reduce the longer-term impact of injuries is needed, and greater investment in primary prevention is needed

    Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium.

    Get PDF
    Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 [rs1053338, per allele OR = 1.07, 95% confidence interval (CI) = 1.04-1.10, P = 2.9 × 10(-6)], AKAP9-M463I at 7q21 (rs6964587, OR = 1.05, 95% CI = 1.03-1.07, P = 1.7 × 10(-6)) and NEK10-L513S at 3p24 (rs10510592, OR = 1.10, 95% CI = 1.07-1.12, P = 5.1 × 10(-17)). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05-1.10, P = 1.0 × 10(-8)); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04-1.07, P = 2.0 × 10(-10)). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act.BCAC is funded by Cancer Research UK (C1287/A10118, C1287/A12014) and by the European Community’s Seventh Framework Programme under grant agreement n8 223175 (HEALTH-F2–2009-223175) (COGS). Meetings of the BCAC have been funded by the European Union COST programme (BM0606). Genotyping of the iCOGS array was funded by the European Union (HEALTH-F2-2009-223175), Cancer Research UK (C1287/A10710), the Canadian Institutes of Health Research for the ‘CIHR Team in Familial Risks of Breast Cancer’ program and the Ministry of Economic Development, Innovation and Export Trade of Quebec (PSR-SIIRI-701). Additional support for the iCOGS infrastructure was provided by the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112—the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. The ABCFS and OFBCR work was supported by grant UM1 CA164920 from the National Cancer Institute (USA). The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products or organizations imply endorsement t by the US Government or the BCFR. The ABCFS was also supported by the National Health and Medical Research Council of Australia, the New South Wales Cancer Council, the Victorian Health Promotion Foundation (Australia) and the Victorian Breast Cancer Research Consortium. J.L.H. is a National Health and Medical Research Council (NHMRC) Senior Principal Research Fellow and M.C.S. is a NHMRC Senior Research Fellow. The OFBCR work was also supported by the Canadian Institutes of Health Research ‘CIHR Team in Familial Risks of Breast Cancer’ program. The ABCS was funded by the Dutch Cancer Society Grant no. NKI2007-3839 and NKI2009-4363. The ACP study is funded by the Breast Cancer Research Trust, UK. The work of the BBCC was partly funded by ELAN-Programme of the University Hospital of Erlangen. The BBCS is funded by Cancer Research UK and Breakthrough Breast Cancer and acknowledges NHS funding to the NIHR Biomedical Research Centre, and the National Cancer Research Network (NCRN). E.S. is supported by NIHR Comprehensive Biomedical Research Centre, Guy’s & St. Thomas’ NHS Foundation Trust in partnership with King’s College London, UK. Core funding to the Wellcome Trust Centre for Human Genetics was provided by the Wellcome Trust (090532/Z/09/Z). I.T. is supported by the Oxford Biomedical Research Centre. The BSUCH study was supported by the Dietmar-Hopp Foundation, the Helmholtz Society and the German Cancer Research Center (DKFZ). The CECILE study was funded by the Fondation de France, the French National Institute of Cancer (INCa), The National League against Cancer, the National Agency for Environmental l and Occupational Health and Food Safety (ANSES), the National Agency for Research (ANR), and the Association for Research against Cancer (ARC). The CGPS was supported by the Chief Physician Johan Boserup and Lise Boserup Fund, the Danish Medical Research Council and Herlev Hospital.The CNIO-BCS was supported by the Genome Spain Foundation the Red Temática de Investigación Cooperativa en Cáncer and grants from the Asociación Española Contra el Cáncer and the Fondo de Investigación Sanitario PI11/00923 and PI081120). The Human Genotyping-CEGEN Unit, CNIO is supported by the Instituto de Salud Carlos III. D.A. was supported by a Fellowship from the Michael Manzella Foundation (MMF) and was a participant in the CNIO Summer Training Program. The CTS was initially supported by the California Breast Cancer Act of 1993 and the California Breast Cancer Research Fund (contract 97-10500) and is currently funded through the National Institutes of Health (R01 CA77398). Collection of cancer incidence e data was supported by the California Department of Public Health as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 103885. HAC receives support from the Lon V Smith Foundation (LVS39420). The ESTHER study was supported by a grant from the Baden Württemberg Ministry of Science, Research and Arts. Additional cases were recruited in the context of the VERDI study, which was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe). The GENICA was funded by the Federal Ministry of Education and Research (BMBF) Germany grants 01KW9975/5, 01KW9976/8, 01KW9977/0 and 01KW0114, the Robert Bosch Foundation, Stuttgart, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), as well as the Department of Internal Medicine , Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus Bonn, Germany. The HEBCS was supported by the Helsinki University Central Hospital Research Fund, Academy of Finland (132473), the Finnish Cancer Society, The Nordic Cancer Union and the Sigrid Juselius Foundation. The HERPACC was supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports, Culture and Technology of Japan, by a Grant-in-Aid for the Third Term Comprehensive 10-Year strategy for Cancer Control from Ministry Health, Labour and Welfare of Japan, by a research grant from Takeda Science Foundation , by Health and Labour Sciences Research Grants for Research on Applying Health Technology from Ministry Health, Labour and Welfare of Japan and by National Cancer Center Research and Development Fund. The HMBCS was supported by short-term fellowships from the German Academic Exchange Program (to N.B), and the Friends of Hannover Medical School (to N.B.). Financial support for KARBAC was provided through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, the Stockholm Cancer Foundation and the Swedish Cancer Society. The KBCP was financially supported by the special Government Funding (EVO) of Kuopio University Hospital grants, Cancer Fund of North Savo, the Finnish Cancer Organizations, the Academy of Finland and by the strategic funding of the University of Eastern Finland. kConFab is supported by grants from the National Breast Cancer Foundation , the NHMRC, the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia and the Cancer Foundation of Western Australia. The kConFab Clinical Follow Up Study was funded by the NHMRC (145684, 288704, 454508). Financial support for the AOCS was provided by the United States Army Medical Research and Materiel Command (DAMD17-01-1-0729), the Cancer Council of Tasmania and Cancer Foundation of Western Australia and the NHMRC (199600). G.C.T. and P.W. are supported by the NHMRC. LAABC is supported by grants (1RB-0287, 3PB-0102, 5PB-0018 and 10PB-0098) from the California Breast Cancer Research Program. Incident breast cancer cases were collected by the USC Cancer Surveillance Program (CSP) which is supported under subcontract by the California Department of Health. The CSP is also part of the National Cancer Institute’s Division of Cancer Prevention and Control Surveillance, Epidemiology, and End Results Program, under contract number N01CN25403. LMBC is supported by the ‘Stichting tegen Kanker’ (232-2008 and 196-2010). The MARIE study was supported by the Deutsche Krebshilfe e.V. (70-2892-BR I), the Federal Ministry of Education Research (BMBF) Germany (01KH0402), the Hamburg Cancer Society and the German Cancer Research Center (DKFZ). MBCSG is supported by grants from the Italian Association ciation for Cancer Research (AIRC) and by funds from the Italian citizens who allocated a 5/1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale Tumori, according to Italian laws (INT-Institutional strategic projects ‘5 × 1000’). The MCBCS was supported by the NIH grants (CA122340, CA128978) and a Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201), the Breast Cancer Research Foundation and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 209057, 251553 and 504711 and by infrastructure provided by Cancer Council Victoria. The MEC was supported by NIH grants CA63464, CA54281, CA098758 and CA132839. The work of MTLGEBCS was supported by the Quebec Breast Cancer Foundation, the Canadian Institutes of Health Research (grant CRN-87521) and the Ministry of Economic Development, Innovation and Export Trade (grant PSR-SIIRI-701). MYBRCA is funded by research grants from the Malaysian Ministry of Science, Technology and Innovation (MOSTI), Malaysian Ministry of Higher Education (UM.C/HlR/MOHE/06) and Cancer Research Initiatives Foundation (CARIF). Additional controls were recruited by the Singapore Eye Research Institute, which was supported by a grant from the Biomedical Research Council (BMRC08/1/35/19,tel:08/1/35/19./550), Singapore and the National medical Research Council, Singapore (NMRC/CG/SERI/2010). The NBCS was supported by grants from the Norwegian Research council (155218/V40, 175240/S10 to A.L.B.D., FUGE-NFR 181600/ V11 to V.N.K. and a Swizz Bridge Award to A.L.B.D.). The NBHS was supported by NIH grant R01CA100374. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The OBCS was supported by research grants from the Finnish Cancer Foundation, the Sigrid Juselius Foundation, the Academy of Finland, the University of Oulu, and the Oulu University Hospital. The ORIGO study was supported by the Dutch Cancer Society (RUL 1997-1505) and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NLCP16). The PBCS was funded by Intramural Research Funds of the National Cancer Institute, Department of Health and Human Services, USA. pKARMA is a combination of the KARMA and LIBRO-1 studies. KARMA was supported by Ma¨rit and Hans Rausings Initiative Against Breast Cancer. KARMA and LIBRO-1 were supported the Cancer Risk Prediction Center (CRisP; www.crispcenter.org), a Linnaeus Centre (Contract ID 70867902) financed by the Swedish Research Council. The RBCS was funded by the Dutch Cancer Society (DDHK 2004-3124, DDHK 2009-4318). SASBAC was supported by funding from the Agency for Science, Technology and Research of Singapore (A∗STAR), the US National Institute of Health (NIH) and the Susan G. Komen Breast Cancer Foundation KC was financed by the Swedish Cancer Society (5128-B07-01PAF). The SBCGS was supported primarily by NIH grants R01CA64277, R01CA148667, and R37CA70867. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The SBCS was supported by Yorkshire Cancer Research S305PA, S299 and S295. Funding for the SCCS was provided by NIH grant R01 CA092447. The Arkansas Central Cancer Registry is fully funded by a grant from National Program of Cancer Registries, Centers for Disease Control and Prevention (CDC). Data on SCCS cancer cases from Mississippi were collected by the Mississippi Cancer Registry which participates in the National Program of Cancer Registries (NPCR) of the Centers for Disease Control and Prevention (CDC). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the CDC or the Mississippi Cancer Registry. SEARCH is funded by a programme grant from Cancer Research UK (C490/A10124) and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. The SEBCS was supported by the BRL (Basic Research Laboratory) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2012-0000347). SGBCC is funded by the National Medical Research Council Start-up Grant and Centre Grant (NMRC/CG/NCIS /2010). The recruitment of controls by the Singapore Consortium of Cohort Studies-Multi-ethnic cohort (SCCS-MEC) was funded by the Biomedical Research Council (grant number: 05/1/21/19/425). SKKDKFZS is supported by the DKFZ. The SZBCS was supported by Grant PBZ_KBN_122/P05/2004. K. J. is a fellow of International PhD program, Postgraduate School of Molecular Medicine, Warsaw Medical University, supported by the Polish Foundation of Science. The TNBCC was supported by the NIH grant (CA128978), the Breast Cancer Research Foundation , Komen Foundation for the Cure, the Ohio State University Comprehensive Cancer Center, the Stefanie Spielman Fund for Breast Cancer Research and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. Part of the TNBCC (DEMOKRITOS) has been co-financed by the European Union (European Social Fund – ESF) and Greek National Funds through the Operational Program ‘Education and Life-long Learning’ of the National Strategic Reference Framework (NSRF)—Research Funding Program of the General Secretariat for Research & Technology: ARISTEIA. The TWBCS is supported by the Institute of Biomedical Sciences, Academia Sinica and the National Science Council, Taiwan. The UKBGS is funded by Breakthrough Breast Cancer and the Institute of Cancer Research (ICR). ICR acknowledges NHS funding to the NIHR Biomedical Research Centre. Funding to pay the Open Access publication charges for this article was provided by the Wellcome Trust.This is the advanced access published version distributed under a Creative Commons Attribution License 2.0, which can also be viewed on the publisher's webstie at: http://hmg.oxfordjournals.org/content/early/2014/07/04/hmg.ddu311.full.pdf+htm

    Examining healthcare professionals’ communication across the perioperative pathway to improve patient safety

    No full text
    © 2012 Dr. Sandra Christine BraafBackground: Communication practices of healthcare professionals have been strongly implicated in the cascade of events that unfold into poor outcomes for surgical patients. Many local and international reports consistently implicate the perioperative environment and communication failure, as critical constituents in the generation of serious adverse events. However, research is lacking into how communication failure occurs and how healthcare professionals achieve communication successes, across all domains of the perioperative pathway, which includes preoperative, intraoperative and postoperative domains. Aims: The aims of this thesis are to explore healthcare professionals’ communication patterns and failures, and describe the impact of communication failures on clinical practice and patient care across the perioperative pathway. Additionally, this thesis aims to provide understandings of how healthcare professionals overcome communication failures and bridge communication gaps across the perioperative pathway. Methods: An institutional ethnographic design was used, involving structured and unstructured observations, focus groups, patient interviews and the International Communications Association’s survey, as research methods. Healthcare professionals of different disciplines were purposively selected from diverse perioperative areas in three, public, metropolitan hospitals. A three-dimensional communication model was used to explore sociocultural and environmental influences on communication, attributes of the communication encounter and outcomes of communication encounters. Data were analysed using an institutional ethnographic approach to uncover the social relations interconnecting healthcare professionals’ work and communication practices. The social relations were traced to identify the institutional relations ruling healthcare professionals’ communication. Findings: Over 350 observation hours, 2 focus groups, 20 interviews and 281 survey responses were collated. Healthcare professionals’ communication patterns revealed communication was frequently face-to-face, short in duration and interrupted. Constant information relay was evident as healthcare professionals engaged in patterns of conveying and exchanging information within disciplines, across disciplines, and across domains of the perioperative pathway. Communication failure occurred due to a lack of open communication among healthcare professionals, as a result of difficultly in distributing information and of healthcare professionals adapting work processes to streamline their work. Furthermore, the odds of communication failure happening were higher when overlapping communication occurred and when post anaesthetic care nurses engaged in multitasking while communicating. Frequent consequences of communication failure were associated with: increased communication interactions, missing information conveyed in communication encounters and increased workload. Compromised patient safety and a reduction in the quality of patients’ care were also outcomes of communication failure. Healthcare professionals exhibited many communication successes as they applied a range of compensatory strategies to forestall communication failure. These strategies overcame discontinuities in communication to prevent patient harm. Healthcare professionals were observed to anticipate, detect and compensate for information loss in communication. Implications: To foster open and accurate communication a reduction in time pressures could ease asynchronous workflows, increase time for documentation, lessen the need for multitasking while communicating, and diminish overlapping communication. Additionally, to encourage information sharing, interdisciplinary education could provide understandings into healthcare professionals’ roles and information needs, and balance unequal power relationships. Furthermore, direct and timely communication could be promoted by technology systems that facilitate information distribution, and support direct communication among healthcare professionals

    The role of documents and documentation in communication failure across the perioperative pathway. A literature review

    Full text link
    OBJECTIVE: Communication practices of healthcare professionals have been strongly implicated in the cascade of events that unfold into poor outcomes for surgical patients. The purpose of this paper is to explore the role of documents and documentation in communication failure among healthcare professionals across the perioperative pathway. The perioperative pathway consists of 3 interconnecting, but geographically distinct domains: preoperative, intraoperative and postoperative. DESIGN: A comprehensive search of the literature was undertaken to provide a focused analysis and appraisal of past research. DATA SOURCES: Electronic databases searched included the Cochrane Database of Systematic Reviews, the Cumulative Index of Nursing and Allied Health Literature (CINAHL), Medline and PsycINFO from 1990 to end February 2011. Additionally, references of retrieved articles were manually examined for papers not revealed via electronic searches. REVIEW METHODS: Content analysis was used to draw out major themes and summarise the information. RESULTS: Fifty-nine papers were selected based on their relevance to the topic. The results highlight that documentation such as surgeons\u27 operation notes, anaesthetists\u27 records and nurses\u27 perioperative notes, deficient in the areas of design, quality, accuracy and function, contributed to the development of communication failure among healthcare professionals across the perioperative pathway. The consequences of communication failure attributable to documentation ranged from inefficiency, delays and increased workload, through to serious adverse patient events such as wrong site surgery. Documents that involve the coordination of verbal communication of multidisciplinary surgical teams, such as preoperative checklists, also influenced communication and surgical patient outcomes. CONCLUSIONS: Effective communication among healthcare professionals is vital to the delivery of safe patient care. Multiple documents utilised across the perioperative pathway have a critical role in the communication of information essential to the immediate and ongoing care of surgical patients. Failure in the communicative function of documents and documentation impedes the transfer of information and contributes to the cascade of events that results in compromised patient safety and potentially adverse patient outcomes

    The \u27time-out\u27 procedure: an institutional ethnography of how it is conducted in actual clinical practice

    Full text link
    BACKGROUND: The time-out procedure is a critically important communication interaction for the preservation of patient safety in the surgical setting. While previous research has examined influences shaping the time-out procedure, limited information exists on how actual time-out communication is performed by multidisciplinary surgical team members in the clinical environment. METHODS: An institutional ethnographic study was undertaken. The study was conducted over three hospital sites in Melbourne, Australia. In total, 125 healthcare professionals from the disciplines of surgery, anaesthesia and nursing participated in the study. Data were generated through 350 h of observation, two focus groups and 20 semi-structured interviews. An institutional ethnographic analysis was undertaken.RESULTS: Analysis revealed healthcare professionals adapted the content, timing and number of team members involved in the time-out procedure to meet the demands of the theatre environment. Habitually, the time-out procedure was partially completed, conducted after surgery had commenced and involved only a few members of the surgical team. Communication was restricted and stifled by asynchronous workflows, time restrictions, a hierarchical culture and disinclination by surgeons and anaesthetists to volunteer information and openly communicate with each other and nurses. Healthcare professionals became normalised to performing an abbreviated time-out procedure. CONCLUSIONS: Patient safety was relegated in importance as productivity, professional and hierarchical discourses configured the communication practices of surgical team members to limit active, open and direct communication. Examining how the time-out procedure was conducted in the clinical environment enables possibilities to emerge for facilitating compliance with hospital and WHO guidelines.</div

    Caregiver Reports of Children’s Activity Participation Following Serious Injury

    Get PDF
    Paediatric trauma can result in significant levels of on-going disability. The aim of this study was to explore the restrictions on activity participation that children experience following serious injury from the perspective of their caregivers. We performed a thematic analysis of transcripts of semi-structured in-depth interviews with the caregivers of 44 seriously injured children, conducted three-years after the injury, and purposively sampled from a population-based cohort study. Both temporary and on-going restrictions on school, sport, leisure and social activities were identified, some of which were imposed by caregivers, schools, or recommended by health providers. The perceived risk of further injury, physical restrictions, emotional state and fatigue levels were important influences on degrees of activity restriction. Children who were socially less engaged, especially those who were more severely injured, had difficulty making and retaining friends, and exhibited signs of depression or social withdrawal. The activities of pre-school children were strongly regulated by their caregivers, while school age children faced obstacles with participation in aspects such as study, sport, and peer and teacher relationships, affecting learning, school attendance and enjoyment. The findings highlight the need for primary prevention and reducing the impacts of serious injury throughout the continuum of care

    Pharmacists\u27 interprofessional communication about medications in specialty hospital settings

    Full text link
    Effective communication between pharmacists, doctors, and nurses about patients\u27 medications is particularly important in specialty hospital settings where high-risk medications are frequently used. This article describes the nature of communication about medications that occurs between pharmacists and other health professionals, including doctors and nurses, in specialty hospital settings. Semistructured interviews with, and participant observations of, pharmacists, nurses, and doctors were conducted in specialty settings of an Australian public, metropolitan teaching hospital. Twenty-one individuals working in the settings of emergency care, oncology care, intensive care, cardiothoracic care, and perioperative care were interviewed. In addition, participant observations of 56 individuals were conducted in emergency care, oncology care, intensive care, and cardiothoracic care. Detailed thematic analysis of the data was performed. Across all of the settings, pharmacy was less visible than medicine and nursing in terms of pharmacists\u27 work performed, pharmacy documentation and resources, and pharmacists\u27 physical visibility. Pharmacists, doctors, and nurses largely worked alongside one another rather than with each other. When collaboration occurred, the professional groups engaged in mostly reactive communication to accomplish specific medication tasks that needed completing. Interprofessional differences in attitudes toward medications and medication management communication behaviors were evident. Pharmacists need to engage in more proactive communication in order to reduce the risk of medication errors occurring
    corecore