22 research outputs found

    Quantifying cell cycle-dependent drug sensitivities in cancer using a high throughput synchronisation and screening approach.

    Get PDF
    BACKGROUND: Chemotherapy and targeted agent anti-cancer efficacy is largely dependent on the proliferative state of tumours, as exemplified by agents that target DNA synthesis/replication or mitosis. As a result, cell cycle specificities of a number of cancer drugs are well known. However, they are yet to be described in a quantifiable manner. METHODS: A scalable cell synchronisation protocol used to screen a library of 235 anti-cancer compounds exposed over six hours in G1 or S/G2 accumulated AsPC-1 cells to generate a cell cycle specificity (CCS) score. FINDINGS: The synchronisation method was associated with reduced method-related cytotoxicity compared to nocodazole, delivering sufficient cell cycle purity and cell numbers to run high-throughput drug library screens. Compounds were identified with G1 and S/G2-associated specificities that, overall, functionally matched with a compound's target/mechanism of action. This annotation was used to describe a synergistic schedule using the CDK4/6 inhibitor, palbociclib, prior to gemcitabine/AZD6738 as well as describe the correlation between the CCS score and published synergistic/antagonistic drug schedules. INTERPRETATION: This is the first highly quantitative description of cell cycle-dependent drug sensitivities that utilised a tractable and tolerated method with potential uses outside the present study. Drug treatments such as those shown to be G1 or S/G2 associated may benefit from scheduling considerations such as after CDK4/6 inhibitors and being first in drug sequences respectively. FUNDING: Cancer Research UK (CRUK) Institute core grants C14303/A17197 and C9545/A29580. The Li Ka Shing Centre where this work was performed was generously funded by CK Hutchison Holdings Limited, the University of Cambridge, CRUK, The Atlantic Philanthropies and others

    The ATR Inhibitor AZD6738 Synergizes with Gemcitabine In Vitro and In Vivo to Induce Pancreatic Ductal Adenocarcinoma Regression.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers, and overall survival rates have barely improved over the past five decades. The antimetabolite gemcitabine remains part of the standard of care but shows very limited antitumor efficacy. Ataxia telangiectasia and Rad3-related protein (ATR), the apical kinase of the intra-S-phase DNA damage response, plays a central role in safeguarding cells from replication stress and can therefore limit the efficacy of antimetabolite drug therapies. We investigated the ability of the ATR inhibitor, AZD6738, to prevent the gemcitabine-induced intra-S-phase checkpoint activation and evaluated the antitumor potential of this combination in vitro and in vivo In PDAC cell lines, AZD6738 inhibited gemcitabine-induced Chk1 activation, prevented cell-cycle arrest, and restrained RRM2 accumulation, leading to the strong induction of replication stress markers only with the combination. Moreover, synergistic growth inhibition was identified in a panel of 5 mouse and 7 human PDAC cell lines using both Bliss Independence and Loewe models. In clonogenic assays, the combination abrogated survival at concentrations for which single agents had minor effects. In vivo, AZD6738 in combination with gemcitabine was well tolerated and induced tumor regression in a subcutaneous allograft model of a KrasG12D; Trp53R172H; Pdx-Cre (KPC) mouse cancer cell line, significantly extending survival. Remarkably, the combination also induced regression of a subgroup of KPC autochthonous tumors, which generally do not respond well to conventional chemotherapy. Altogether, our data suggest that AZD6738 in combination with gemcitabine merits evaluation in a clinical trial in patients with PDAC. Mol Cancer Ther; 17(8); 1670-82. ©2018 AACR

    Mechanistic Distinctions between CHK1 and WEE1 Inhibition Guide the Scheduling of Triple Therapy with Gemcitabine.

    Get PDF
    Combination of cytotoxic therapy with emerging DNA damage response inhibitors (DDRi) has been limited by tolerability issues. However, the goal of most combination trials has been to administer DDRi with standard-of-care doses of chemotherapy. We hypothesized that mechanism-guided treatment scheduling could reduce the incidence of dose-limiting toxicities and enable tolerable multitherapeutic regimens. Integrative analyses of mathematical modeling and single-cell assays distinguished the synergy kinetics of WEE1 inhibitor (WEE1i) from CHEK1 inhibitor (CHK1i) by potency, spatiotemporal perturbation, and mitotic effects when combined with gemcitabine. These divergent properties collectively supported a triple-agent strategy, whereby a pulse of gemcitabine and CHK1i followed by WEE1i durably suppressed tumor cell growth. In xenografts, CHK1i exaggerated replication stress without mitotic CDK hyperactivation, enriching a geminin-positive subpopulation and intratumoral gemcitabine metabolite. Without overt toxicity, addition of WEE1i to low-dose gemcitabine and CHK1i was most effective in tumor control compared with single and double agents. Overall, our work provides quantitative insights into the mechanisms of DDRi chemosensitization, leading to the rational development of a tolerable multitherapeutic regimen.Significance: Multiple lines of mechanistic insight regarding DNA damage response inhibitors rationally guide the preclinical development of a tolerable multitherapeutic regimen.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/11/3054/F1.large.jpg Cancer Res; 78(11); 3054-66. ©2018 AACR

    Preparation, Characterization and Effectiveness to Delay Lipid Oxidation in Almonds and Beef Meat

    Get PDF
    Funding Information: This study was carried out under the VIPACFood project, funded by ARIMNet2 (Coordination of Agricultural Research in the Mediterranean; 2014–2017), an ERA-NET Action financed by the European Union under the Seventh Framework Programme, and by the Programa de Cooperación Interreg V-A España–Portugal (POCTEP) 2014–2020 (project 0377_IBERPHENOL_6_E). Cássia H. Barbosa is grateful for her research grant in the frame of the VIPACFood project (ARIMNET2/0003/2016) and the Foundation for Science and Technology (FCT), Portugal, for the Ph.D. grant 2021.08154.BD. This research was also funded by PT national funds (FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) through grants UIDB/50006/2020 and UIDB/00211/2020. L. Barbosa-Pereira is grateful to the Spanish Ministry of Science, Innovation and Universities for her “Juan de la Cierva-Incorporación” grant (Agreement No. IJCI-2017-31665). Publisher Copyright: © 2023 by the authors.Low-density polyethylene-based packaging with 4% lemon extract (LDPE/4LE) and two polylactic-based (PLA) packaging materials with 4% and 6% lemon extract (PLA/PEG/4LE and PLA/6LE) were produced. O2 and water permeability tests were performed, the total and individual phenolic compounds content were measured, and the films’ antioxidant activities were determined. The films’ ability to delay lipid oxidation was tested in two model foods: almonds, packaged with LDPE/4LE, PLA/4LE and PLA/6LE for a maximum period of 60 days at 40 °C (accelerated assay); and beef meat, packaged with the PLA/6LE for a maximum period of 11 days at 4 °C. The LE improved the WVP in all of the active films by 33%, 20% and 60% for the LDPE/4LE, PLA/4LE and PLA/6LE films, respectively. At the end of 10 days, the migration of phenolic compounds through the PLA films was measured to be 142.27 and 114.9 μg/dm2 for the PLA/4LE and PLA/6LE films, respectively, and was significantly higher than phenolic compounds migration measured for the LDPE/4LE (15.97 μg/dm2). Naringenin, apigenin, ferulic acid, eriocitrin, hesperidin and 4-hydroxybenzoic acid were the main identified compounds in the PLA, but only 4-hydroxybenzoic acid, naringenin and p-coumaric acid were identified in the LDPE films. Regarding the films’ ability to delay lipid oxidation, LDPE/4LE presented the best results, showing a capacity to delay lipid oxidation in almonds for 30 days. When applied to raw beef meat, the PLA/6LE packaging was able to significantly inhibit lipid oxidation for 6 days, and successfully inhibited total microorganisms’ growth until the 8th day of storage.publishersversionpublishe

    Identification of TRPC6 as a possible candidate target gene within an amplicon at 11q21-q22.2 for migratory capacity in head and neck squamous cell carcinomas

    Get PDF
    Abstract: Background: Cytogenetic and gene expression analyses in head and neck squamous cell carcinomas (HNSCC) have allowed identification of genomic aberrations that may contribute to cancer pathophysiology. Nevertheless, the molecular consequences of numerous genetic alterations still remain unclear. Methods: To identify novel genes implicated in HNSCC pathogenesis, we analyzed the genomic alterations present in five HNSCC-derived cell lines by array CGH, and compared high level focal gene amplifications with gene expression levels to identify genes whose expression is directly impacted by these genetic events. Next, we knocked down TRPC6, one of the most highly amplified and over-expressed genes, to characterize the biological roles of TRPC6 in carcinogenesis. Finally, real time PCR was performed to determine TRPC6 gene dosage and mRNA levels in normal mucosa and human HNSCC tissues. Results: The data showed that the HNSCC-derived cell lines carry most of the recurrent genomic abnormalities previously described in primary tumors. High-level genomic amplifications were found at four chromosomal sites (11q21-q22.2, 18p11.31-p11.21, 19p13.2-p13.13, and 21q11) with associated gene expression changes in selective candidate genes suggesting that they may play an important role in the malignant behavior of HNSCC. One of the most dramatic alterations of gene transcription involved the TRPC6 gene (located at 11q21-q22.2) which has been recently implicated in tumour invasiveness. siRNA-induced knockdown of TRPC6 expression in HNSCC-derived cells dramatically inhibited HNSCC-cell invasion but did not significantly alter cell proliferation. Importantly, amplification and concomitant overexpression of TRPC6 was also found in HNSCC tumour samples. Conclusions: Altogether, these data show that TRPC6 is likely to be a target for 11q21-22.2 amplification that confers enhanced invasive behavior to HNSCC cells. Therefore, TRPC6 may be a promising therapeutic target in the treatment of HNSCC.This work was supported by Instituto de Salud Carlos III-Fondo de Investigacion Sanitaria [FIS PI11/929 to M.-D.C and C. S.]; Red Tematica de Investigacion Cooperativa en Cancer [RD12/0036/0015] Instituto de Salud Carlos III (ISCIII), Spanish Ministry of Economy and Competitiveness & European Regional Development Fund (ERDF); and Obra Social CajAstur-Instituto Universitario de Oncologia del Principado de Asturias.Bernaldo De Quirós, S.; Merlo, A.; Secades, P.; Zambrano, I.; Saenz De Santa María, I.; Ugidos, N.; Jantus Lewintre, E.... (2013). Identification of TRPC6 as a possible candidate target gene within an amplicon at 11q21-q22.2 for migratory capacity in head and neck squamous cell carcinomas. BMC Cancer. 13(116):1-9. https://doi.org/10.1186/1471-2407-13-116S1913116Akervall J: Genomic screening of head and neck cancer and its implications for therapy planning. Eur Arch Otorhinolaryngol. 2006, 263: 297-304. 10.1007/s00405-006-1039-1.Squire JA, Bayani J, Luk C, Unwin L, Tokunaga J, MacMillan C, Irish J, Brown D, Gullane P, Kamel-Reid S: Molecular cytogenetic analysis of head and neck squamous cell carcinoma: by comparative genomic hybridization, spectral karyotyping, and expression array analysis. Head Neck. 2002, 24: 874-887. 10.1002/hed.10122.Perez-Ordonez B, Beauchemin M, Jordan RC: Molecular biology of squamous cell carcinoma of the head and neck. J Clin Pathol. 2006, 59: 445-453. 10.1136/jcp.2003.007641.Tan KD, Zhu Y, Tan HK, Rajasegaran V, Aggarwal A, Wu J, Wu HY, Hwang J, Lim DT, Soo KC, Tan P: Amplification and overexpression of PPFIA1, a putative 11q13 invasion suppressor gene, in head and neck squamous cell carcinoma. Genes Chromosomes Cancer. 2008, 47: 353-362. 10.1002/gcc.20539.Rodrigo JP, Garcia LA, Ramos S, Lazo PS, Suarez C: EMS1 Gene amplification correlates with poor prognosis in squamous cell carcinomas of the head and neck. Clin Cancer Res. 2000, 6: 3177-3182.Callender T, el-Naggar AK, Lee MS, Frankenthaler R, Luna MA, Batsakis JG: PRAD-1 (CCND1)/cyclin D1 oncogene amplification in primary head and neck squamous cell carcinoma. Cancer. 1994, 74: 152-158. 10.1002/1097-0142(19940701)74:13.0.CO;2-K.Huang X, Gollin SM, Raja S, Godfrey TE: High-resolution mapping of the 11q13 amplicon and identification of a gene, TAOS1, that is amplified and overexpressed in oral cancer cells. Proc Natl Acad Sci U S A. 2002, 99: 11369-11374. 10.1073/pnas.172285799.Gorogh T, Weise JB, Holtmeier C, Rudolph P, Hedderich J, Gottschlich S, Hoffmann M, Ambrosch P, Csiszar K: Selective upregulation and amplification of the lysyl oxidase like-4 (LOXL4) gene in head and neck squamous cell carcinoma. J Pathol. 2007, 212: 74-82. 10.1002/path.2137.Begum A, Imoto I, Kozaki K, Tsuda H, Suzuki E, Amagasa T, Inazawa J: Identification of PAK4 as a putative target gene for amplification within 19q13.12-q13.2 In oral squamous-cell carcinoma. Cancer Sci. 2009, 100: 1908-1916. 10.1111/j.1349-7006.2009.01252.x.Secades P, Rodrigo JP, Hermsen M, Alvarez C, Suarez C, Chiara MD: Increase in gene dosage is a mechanism of HIF-1alpha constitutive expression in head and neck squamous cell carcinomas. Genes Chromosomes Cancer. 2009, 48: 441-454. 10.1002/gcc.20652.Singh B, Gogineni SK, Sacks PG, Shaha AR, Shah JP, Stoffel A, Rao PH: Molecular cytogenetic characterization of head and neck squamous cell carcinoma and refinement of 3q amplification. Cancer Res. 2001, 61: 4506-4513.Baldwin C, Garnis C, Zhang L, Rosin MP, Lam WL: Multiple microalterations detected at high frequency in oral cancer. Cancer Res. 2005, 65: 7561-7567.Roman E, Meza-Zepeda LA, Kresse SH, Myklebost O, Vasstrand EN, Ibrahim SO: Chromosomal aberrations in head and neck squamous cell carcinomas in Norwegian and Sudanese populations by array comparative genomic hybridization. Oncol Rep. 2008, 20: 825-843.Weber RG, Sommer C, Albert FK, Kiessling M, Cremer T: Clinically distinct subgroups of glioblastoma multiforme studied by comparative genomic hybridization. Lab Invest. 1996, 74: 108-119.Knuutila S, Bjorkqvist AM, Autio K, Tarkkanen M, Wolf M, Monni O, Szymanska J, Larramendy ML, Tapper J, Pere H: DNA copy number amplifications in human neoplasms: review of comparative genomic hybridization studies. Am J Pathol. 1998, 152: 1107-1123.Menghi-Sartorio S, Mandahl N, Mertens F, Picci P, Knuutila S: DNA copy number amplifications in sarcomas with homogeneously staining regions and double minutes. Cytometry. 2001, 46: 79-84. 10.1002/cyto.1068.Imoto I, Tsuda H, Hirasawa A, Miura M, Sakamoto M, Hirohashi S, Inazawa J: Expression of cIAP1, a target for 11q22 amplification, correlates with resistance of cervical cancers to radiotherapy. Cancer Res. 2002, 62: 4860-4866.Dai Z, Zhu WG, Morrison CD, Brena RM, Smiraglia DJ, Raval A, Wu YZ, Rush LJ, Ross P, Molina JR: A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes. Hum Mol Genet. 2003, 12: 791-801. 10.1093/hmg/ddg083.Bashyam MD, Bair R, Kim YH, Wang P, Hernandez-Boussard T, Karikari CA, Tibshirani R, Maitra A, Pollack JR: Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia. 2005, 7: 556-562. 10.1593/neo.04586.Helias-Rodzewicz Z, Perot G, Chibon F, Ferreira C, Lagarde P, Terrier P, Coindre JM, Aurias A: YAP1 And VGLL3, encoding two cofactors of TEAD transcription factors, are amplified and overexpressed in a subset of soft tissue sarcomas. Genes Chromosomes Cancer. 2010, 49: 1161-1171. 10.1002/gcc.20825.Fernandez LA, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, Taylor MD, Kenney AM: YAP1 Is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates sonic hedgehog-driven neural precursor proliferation. Genes Dev. 2009, 23: 2729-2741. 10.1101/gad.1824509.Muramatsu T, Imoto I, Matsui T, Kozaki K, Haruki S, Sudol M, Shimada Y, Tsuda H, Kawano T, Inazawa J: YAP is a candidate oncogene for esophageal squamous cell carcinoma. Carcinogenesis. 2010, 32: 389-398.Chigurupati S, Venkataraman R, Barrera D, Naganathan A, Madan M, Paul L, Pattisapu JV, Kyriazis GA, Sugaya K, Bushnev S: Receptor channel TRPC6 is a key mediator of notch-driven glioblastoma growth and invasiveness. Cancer Res. 2010, 70: 418-427. 10.1158/0008-5472.CAN-09-2654.Ding X, He Z, Zhou K, Cheng J, Yao H, Lu D, Cai R, Jin Y, Dong B, Xu Y, Wang Y: Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. J Natl Cancer Inst. 2010, 102: 1052-1068. 10.1093/jnci/djq217.Lansford CDGR, Bier H: Head and neck cancers. 1999, Dordrecht: Kluwer Academic Pressvan den Ijssel P, Tijssen M, Chin SF, Eijk P, Carvalho B, Hopmans E, Holstege H, Bangarusamy DK, Jonkers J, Meijer GA: Human and mouse oligonucleotide-based array CGH. Nucleic Acids Res. 2005, 33: e192-10.1093/nar/gni191.Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.Gollin SM: Chromosomal alterations in squamous cell carcinomas of the head and neck: window to the biology of disease. Head Neck. 2001, 23: 238-253. 10.1002/1097-0347(200103)23:33.0.CO;2-H.Smeets SJ, Braakhuis BJ, Abbas S, Snijders PJ, Ylstra B, van de Wiel MA, Meijer GA, Leemans CR, Brakenhoff RH: Genome-wide DNA copy number alterations in head and neck squamous cell carcinomas with or without oncogene-expressing human papillomavirus. Oncogene. 2006, 25: 2558-2564. 10.1038/sj.onc.1209275.Snijders AM, Schmidt BL, Fridlyand J, Dekker N, Pinkel D, Jordan RC, Albertson DG: Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma. Oncogene. 2005, 24: 4232-4242. 10.1038/sj.onc.1208601.Canel M, Secades P, Garzon-Arango M, Allonca E, Suarez C, Serrels A, Frame M, Brunton V, Chiara MD: Involvement of focal adhesion kinase in cellular invasion of head and neck squamous cell carcinomas via regulation of MMP-2 expression. Br J Cancer. 2008, 98: 1274-1284. 10.1038/sj.bjc.6604286.Canel M, Secades P, Rodrigo JP, Cabanillas R, Herrero A, Suarez C, Chiara MD: Overexpression of focal adhesion kinase in head and neck squamous cell carcinoma is independent of fak gene copy number. Clin Cancer Res. 2006, 12: 3272-3279. 10.1158/1078-0432.CCR-05-1583.Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006, 10: 515-527. 10.1016/j.ccr.2006.10.008.Jarvinen AK, Autio R, Kilpinen S, Saarela M, Leivo I, Grenman R, Makitie AA, Monni O: High-resolution copy number and gene expression microarray analyses of head and neck squamous cell carcinoma cell lines of tongue and larynx. Genes Chromosomes Cancer. 2008, 47: 500-509. 10.1002/gcc.20551.Lockwood WW, Chari R, Coe BP, Girard L, Macaulay C, Lam S, Gazdar AF, Minna JD, Lam WL: DNA amplification is a ubiquitous mechanism of oncogene activation in lung and other cancers. Oncogene. 2008, 27: 4615-4624. 10.1038/onc.2008.98.Weber A, Hengge UR, Stricker I, Tischoff I, Markwart A, Anhalt K, Dietz A, Wittekind C, Tannapfel A: Protein microarrays for the detection of biomarkers in head and neck squamous cell carcinomas. Hum Pathol. 2007, 38: 228-238. 10.1016/j.humpath.2006.07.012.Pacheco MM, Kowalski LP, Nishimoto IN, Brentani MM: Differential expression of c-jun and c-fos mRNAs in squamous cell carcinoma of the head and neck: associations with uPA, gelatinase B, and matrilysin mRNAs. Head Neck. 2002, 24: 24-32. 10.1002/hed.10009.Xie M, Sun Y, Li Y: Expression of matrix metalloproteinases in supraglottic carcinoma and its clinical implication for estimating lymph node metastases. Laryngoscope. 2004, 114: 2243-2248. 10.1097/01.mlg.0000149467.18822.59.Werner JA, Rathcke IO, Mandic R: The role of matrix metalloproteinases in squamous cell carcinomas of the head and neck. Clin Exp Metastasis. 2002, 19: 275-282. 10.1023/A:1015531319087.Zhang L, Ye DX, Pan HY, Wei KJ, Wang LZ, Wang XD, Shen GF, Zhang ZY: Yes-associated protein promotes cell proliferation by activating Fos related activator-1 in oral squamous cell carcinoma. Oral Oncol. 2011, 47: 693-697. 10.1016/j.oraloncology.2011.06.003.Yokoyama T, Osada H, Murakami H, Tatematsu Y, Taniguchi T, Kondo Y, Yatabe Y, Hasegawa Y, Shimokata K, Horio Y: YAP1 Is involved in mesothelioma development and negatively regulated by Merlin through phosphorylation. Carcinogenesis. 2008, 29: 2139-2146. 10.1093/carcin/bgn200.Diep CH, Zucker KM, Hostetter G, Watanabe A, Hu C, Munoz RM, Von Hoff DD, Han H: Down-regulation of Yes associated protein 1 expression reduces cell proliferation and clonogenicity of pancreatic cancer cells. PLoS One. 7: e32783-Kang W, Tong JH, Chan AW, Lee TL, Lung RW, Leung PP, So KK, Wu K, Fan D, Yu J: Yes-associated protein 1 exhibits oncogenic property in gastric cancer and its nuclear accumulation associates with poor prognosis. Clin Cancer Res. 2011, 17: 2130-2139. 10.1158/1078-0432.CCR-10-2467.Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, Deng CX, Brugge JS, Haber DA: Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci U S A. 2006, 103: 12405-12410. 10.1073/pnas.0605579103.Guilbert A, Dhennin-Duthille I, Hiani YE, Haren N, Khorsi H, Sevestre H, Ahidouch A, Ouadid-Ahidouch H: Expression of TRPC6 channels in human epithelial breast cancer cells. BMC Cancer. 2008, 8: 125-10.1186/1471-2407-8-125.Yue D, Wang Y, Xiao JY, Wang P, Ren CS: Expression of TRPC6 in benign and malignant human prostate tissues. Asian J Androl. 2009, 11: 541-547. 10.1038/aja.2009.53.Cai R, Ding X, Zhou K, Shi Y, Ge R, Ren G, Jin Y, Wang Y: Blockade of TRPC6 channels induced G2/M phase arrest and suppressed growth in human gastric cancer cells. Int J Cancer. 2009, 125: 2281-2287. 10.1002/ijc.24551.Shi Y, Ding X, He ZH, Zhou KC, Wang Q, Wang YZ: Critical role of TRPC6 channels in G2 phase transition and the development of human oesophageal cancer. Gut. 2009, 58: 1443-1450. 10.1136/gut.2009.181735.Thebault S, Flourakis M, Vanoverberghe K, Vandermoere F, Roudbaraki M, Lehen’kyi V, Slomianny C, Beck B, Mariot P, Bonnal JL: Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res. 2006, 66: 2038-2047. 10.1158/0008-5472.CAN-05-0376.El Boustany C, Bidaux G, Enfissi A, Delcourt P, Prevarskaya N, Capiod T: Capacitative calcium entry and transient receptor potential canonical 6 expression control human hepatoma cell proliferation. Hepatology. 2008, 47: 2068-2077. 10.1002/hep.22263

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Spatiotemporal Characteristics of the Largest HIV-1 CRF02_AG Outbreak in Spain: Evidence for Onward Transmissions

    Get PDF
    Background and Aim: The circulating recombinant form 02_AG (CRF02_AG) is the predominant clade among the human immunodeficiency virus type-1 (HIV-1) non-Bs with a prevalence of 5.97% (95% Confidence Interval-CI: 5.41–6.57%) across Spain. Our aim was to estimate the levels of regional clustering for CRF02_AG and the spatiotemporal characteristics of the largest CRF02_AG subepidemic in Spain.Methods: We studied 396 CRF02_AG sequences obtained from HIV-1 diagnosed patients during 2000–2014 from 10 autonomous communities of Spain. Phylogenetic analysis was performed on the 391 CRF02_AG sequences along with all globally sampled CRF02_AG sequences (N = 3,302) as references. Phylodynamic and phylogeographic analysis was performed to the largest CRF02_AG monophyletic cluster by a Bayesian method in BEAST v1.8.0 and by reconstructing ancestral states using the criterion of parsimony in Mesquite v3.4, respectively.Results: The HIV-1 CRF02_AG prevalence differed across Spanish autonomous communities we sampled from (p < 0.001). Phylogenetic analysis revealed that 52.7% of the CRF02_AG sequences formed 56 monophyletic clusters, with a range of 2–79 sequences. The CRF02_AG regional dispersal differed across Spain (p = 0.003), as suggested by monophyletic clustering. For the largest monophyletic cluster (subepidemic) (N = 79), 49.4% of the clustered sequences originated from Madrid, while most sequences (51.9%) had been obtained from men having sex with men (MSM). Molecular clock analysis suggested that the origin (tMRCA) of the CRF02_AG subepidemic was in 2002 (median estimate; 95% Highest Posterior Density-HPD interval: 1999–2004). Additionally, we found significant clustering within the CRF02_AG subepidemic according to the ethnic origin.Conclusion: CRF02_AG has been introduced as a result of multiple introductions in Spain, following regional dispersal in several cases. We showed that CRF02_AG transmissions were mostly due to regional dispersal in Spain. The hot-spot for the largest CRF02_AG regional subepidemic in Spain was in Madrid associated with MSM transmission risk group. The existence of subepidemics suggest that several spillovers occurred from Madrid to other areas. CRF02_AG sequences from Hispanics were clustered in a separate subclade suggesting no linkage between the local and Hispanic subepidemics
    corecore