30 research outputs found

    Pelvic actinimycosis

    Get PDF
    Actinomycosis is a chronic bacterial infection caused by Actinomyces, Gram-positive anaerobic bacteria. Its symptomatology imitates some malignant pelvic tumours, tuberculosis, or nocardiosis, causing abscesses and fistulas. Actinomycoses are opportunistic infections and require normal mucous barriers to be altered. No epidemiological studies have been conducted to determine prevalence or incidence of such infections. Objective. To analyse the clinical cases of pelvic actinomycosis reported worldwide, to update the information about the disease. Methods. A systematic review of worldwide pelvic actinomycosis cases between 1980 and 2014 was performed, utilising the PubMed, Scopus, and Google Scholar databases. The following information was analysed: year, country, type of study, number of cases, use of intrauterine device (IUD), final and initial diagnosis, andmethod of diagnosis. Results. 63 articles met the search criteria, of which 55 reported clinical cases and 8 reported cross-sectional studies. Conclusions. Pelvic actinomycosis is confusing to diagnose and should be considered in the differential diagnosis of pelvic chronic inflammatory lesions. It is commonly diagnosed through a histological report, obtained after a surgery subsequent to an erroneous initial diagnosis. A bacterial culture in anaerobic medium could be useful for the diagnosis but requires a controlled technique and should be performed using specialised equipment

    Búsqueda de capacidad productora de biosurfactantes en actinobacterias haloalcalófilas y haloalcalotolerantes

    Get PDF
    Una opción para biorremediar ambientes salinos contaminados con compuestos orgánicos hidrofóbicos, es el uso de microorganismos haloalcalófilos o haloalcalotolerantes capaces de producir biosurfactantes estables y consumir al compuesto hidrófobo. El biosurfactante solubiliza al contaminante haciéndolo biodisponible para el microrganismo. De estudios previos se conocía la capacidad de siete actinobacterias haloalcalotolerantes para transformar el antraceno. En este trabajo, a estas siete más 11 más aisladas de ambientes salinos, se les determinó la capacidad para producir biosurfactantes con propiedades emulsificantes. A las que la mostraron, fueron seleccionadas para saber si utilizaban al antraceno como única fuente de carbono y energía. La capacidad para producir biosurfactante fue determinada por los métodos de actividad hemolítica, gota colapsada y difusión del diámetro de la gota. La propiedad emulsificante y la estabilidad de la emulsión se caracterizaron con el índice de emulsificación y el índice de emulsificación relativo, respectivamente. De 18 actinobacterias evaluadas, cinco cepas mostraron capacidad para producir biosurfactantes con propiedades emulsificantes, alta estabilidad en la emulsión y utilización de antraceno como única fuente de carbono y energía. De estas cinco, dos son haloalcalófilas pertenecientes a la especie Nocardiopsis salina y tres son haloalcalotolerantes pertenecientes a las especies: Kocuria palustris, Microbacterium testaceum y Kocuria rosea. En un estudio previo se determinó la capacidad transformadora de antraceno en las tres cepas haloalcalotolerantes, por lo tanto los resultados de este estudio sugieren proponerlas como candidatas para procesos de biorremediación de ambientes salinos contaminados con compuestos hidrófobos. Asimismo se sugiere determinar la misma capacidad para las dos cepas haloalcalófilas.SIEA-UAEMex 3690/2014/CID SIEA-UAEMex 1039/2014RIFC SEP-PRODEP-Convocatoria de Redes 201

    Molecular identification of Nocardia species using the sodA gene Identificación molecular de especies de Nocardia utilizando el gen sodA.

    Get PDF
    Currently for bacterial identification and classification the rrs gene encoding 16S rRNA is used as a reference method for the analysis of strains of the genus Nocardia. However, it does not have enough polymorphism to differentiate them at the species level. This fact makes it necessary to search for molecular targets that can provide better identification. The sodA gene (encoding the enzyme superoxide dismutase) has had good results in identifying species of other Actinomycetes. In this study the sodA gene is proposed for the identification and differentiation at the species level of the genus Nocardia. We used 41 type species of various collections; a 386 bp fragment of the sodA gene was amplified and sequenced, and a phylogenetic analysis was performed comparing the genes rrs (1171 bp), hsp65 (401 bp), secA1 (494 bp), gyrB (1195 bp) and rpoB (401 bp). The sequences were aligned using the Clustal X program. Evolutionary trees according to the neighbour-joining method were created with the programs Phylo_win and MEGA 6. The specific variability of the sodA genus of the genus Nocardia was analysed. A high phylogenetic resolution, significant genetic variability, and specificity and reliability were observed for the differentiation of the isolates at the species level. The polymorphism observed in the sodA gene sequence contains variable regions that allow the discrimination of closely related Nocardia species. The clear specificity, despite its small size, proves to be of great advantage for use in taxonomic studies and clinical diagnosis of the genus Nocardia

    Draft Genome Sequence of Saccharomonospora sp. Strain LRS4.154, a Moderately Halophilic Actinobacterium with the Biotechnologically Relevant Polyketide Synthase and Nonribosomal Peptide Synthetase Systems

    Get PDF
    The draft genome sequence of Saccharomonospora sp. strain LRS4.154, a moderately halophilic actinobacterium, has been determined. The genome has 4,860,108 bp, a G C content of 71.0%, and 4,525 open reading frames (ORFs). The clusters of PKS and NRPS genes, responsible for the biosynthesis of a large number of biomolecules, were identified in the genome

    Draft Genome Sequence of Saccharomonospora piscinae KCTC 19743T, an Actinobacterium Containing Secondary Metabolite Biosynthetic Gene Clusters

    Get PDF
    Artículo científico producto de proyecto de investigación.The draft genome sequence of Saccharomonospora piscinae KCTC 19743T, with a size of 4,897,614 bp, was assembled into 11 scaffolds containing 4,561 open reading frames and a G C content of 71.0 mol%. Polyketide synthase and nonribosomal peptide synthetase gene clusters, which are responsible for the biosynthesis of several biomolecules, were identified and located in different regions in the genome.CONACY

    Molecular Identification of Mycobacterium Species of Public Health and Veterinary Importance from Cattle in the South State of México

    Get PDF
    Mycobacterium genus causes a variety of zoonotic diseases. The best known example is the zoonotic tuberculosis due to M. bovis. Much less is known about “nontuberculous mycobacteria (NTM),” which are also associated with infections in humans. The Mexican standard NOM-ZOO-031-1995 regulates the presence of M. bovis in cattle; however, no regulation exists for the NTM species. The objective of this study was to isolate and identify nontuberculous mycobacteria species from cattle of local herds in the south region of the State of Mexico through the identification and detection of the 100 bp molecular marker in the 23S rRNA gene with subsequent sequencing of the 16S rRNA gene.Milk samples (35) and nasal exudate samples (68) were collected. From the 108 strains isolated, 39 were selected for identification. Thirteen strains isolated from nasal exudates amplified the 100 bp molecular marker and were identified as M. neoaurum (six strains), M. parafortuitum (four strains), M. moriokaense (two strains), and M. confluentis (one strain). Except M. parafortuitum, the other species identified are of public health and veterinary concern because they are pathogenic to humans, especially those with underlying medical conditions

    Draft Genome Sequence of Saccharomonospora sp. Strain LRS4.154, a Moderately Halophilic Actinobacterium with the Biotechnologically Relevant Polyketide Synthase and Nonribosomal Peptide Synthetase Systems

    Get PDF
    The draft genome sequence of Saccharomonospora sp. strain LRS4.154, a moderately halophilic actinobacterium, has been determined. The genome has 4,860,108 bp, a G+C content of 71.0%, and 4,525 open reading frames (ORFs). The clusters of PKS and NRPS genes, responsible for the biosynthesis of a large number of biomolecules, were identified in the genome.España, Ministerio de Economía e Innovación grant number CGL2013-46941-

    Genetic variability of the 16S rRNA gene of Nocardia brasiliensis, the most common causative agent of actinomycetoma in Latin America and the Caribbean

    Get PDF
    Mycetoma is a neglected tropical disease (NTD) declared by the World Health Organization (WHO) in 2016. It is characterized by the progressive growth of nodules and granulomatous lesions on the legs, arms, and trunk. It is potentially disfiguring and causes disability or amputations in working-age people from marginalized areas. The causative agents can be fungi (eumycetoma) or actinobacteria (actinomycetoma), the latter being the most common in America and Asia. Nocardia brasiliensis is the most important causal agent of actinomycetoma in the Americas. Taxonomic problems have been reported when identifying this species, so this study aimed to detect the 16S rRNA gene variations in N. brasiliensis strains using an in silico enzymatic restriction technique. The study included strains from clinical cases of actinomycetoma in Mexico, isolated from humans and previously identified as N. brasiliensis by traditional methods. The strains were characterized microscopically and macroscopically, then subjected to DNA extraction and amplification of the 16S rRNA gene by PCR. The amplification products were sequenced, and consensus sequences were constructed and used for genetic identification and in silico restriction enzyme analysis with the New England BioLabs® NEBcutter program. All study strains were molecularly identified as N. brasiliensis; however, in silico restriction analysis detected a diversity in the restriction patterns that were finally grouped and subclassified into 7 ribotypes. This finding confirms the existence of subgroups within N. brasiliensis. The results support the need to consider N. brasiliensis as a complex species

    Haloalkalitolerant Actinobacteria with capacity for anthracene degradation isolated from soils close to areas with oil activity in the State of Veracruz, Mexico

    Get PDF
    The use of native strains of microorganisms from soils is an excellent option for bioremediation. To our knowledge, until now there has been no other group working on the isolation of Actinobacteria from contaminated soils in Mexico. In this study, samples of soils close to areas with oil activity in the State of Veracruz, Mexico, were inoculated for the isolation of Actinobacteria. The strains isolated were characterized morphologically, and the concentrations of NaCl and pH were determined for optimal growth. Strain selection was performed by the detection of a phylogenetic marker for Actinobacteria located at the 23S rRNA gene, followed by species identification by sequencing the 16S rRNA gene. Several haloalkalitolerant Actinobacteria were isolated and identified as: Kocuria rosea, K. palustris, Microbacterium testaceum, Nocardia farcinica and Cellulomonas denverensis. Except for C. denverensis, the biomass of all strains increased in the presence of anthracene. The strains capacity to metabolize anthracene (at 48 h), determined by fluorescence emission, was in the range of 46–54%. During this time, dihydroxy aromatic compounds formed, characterized by attenuated total reflectance Fourier transform infrared spectroscopy bands of 1205 cm–1 and 1217 cm–1. Those Actinobacteria are potentially useful for the bioremediation of saline and alkaline environments contaminated with polycyclic aromatic hydrocarbon compounds

    Pantoea agglomerans in Immunodeficient Patients with Different Respiratory Symptoms

    Get PDF
    The aim of this paper was to determine in 32 patients from 4 different Mexican hospitals the frequency of opportunistic bacteria in the 2010 to 2011 time period. The patients were divided in 4 groups. Group 1 included 21 HIV positive patients with acute respiratory syndrome. Four HIV positive patients with tuberculosis symptoms were included in Group 2; two patients with tuberculosis symptoms and one asymptomatic person formed Group 3. Reference Group 4 included 4 patients from whom 4 strains of Mycobacterium spp. had been reported. The strains were isolated and identified by 16S rRNA gene amplification, API 20E and 50CH, biochemical test, and antibiotic sensitivity. The strains found were 10 Pantoea agglomerans, 6 Mycobacterium spp., 6 Pseudomonas spp. and 10 strains of normal floral species: Thermoactinomycetes bacterium (1), Enterococcus faecium (2), Bacillus licheniformis (1), Lactobacillus rhamnosus (2), Streptococcus oralis (2), Streptococcus anginosus (1), and Enterobacter hormaechei (1)
    corecore