22 research outputs found

    Invasive predators affect community-wide pollinator visitation

    Get PDF
    Disruption of plant–pollinator interactions by invasive predators is poorly understood but may pose a critical threat for native ecosystems. In a multiyear field experiment in Hawai’i, we suppressed abundances of globally invasive predators and then observed insect visitation to flowers of six native plant species. Three plant species are federally endangered (Haplostachys haplostachya, Silene lanceolata, Tetramolopium arenarium) and three are common throughout their range (Bidens menziesii, Dubautia linearis, Sida fallax). Insect visitors were primarily generalist pollinators, including taxa that occur worldwide such as solitary bees (e.g., Lasioglossum impavidum), social bees (e.g., Apis mellifera), and syrphid flies (e.g., Allograpta exotica). We found that suppressing invasive rats (Rattus rattus), mice (Mus musculus), ants (Linepithema humile, Tapinoma melanocephalum), and yellowjacket wasps (Vespula pensylvanica) had positive effects on pollinator visitation to plants in 16 of 19 significant predator–pollinator–plant interactions. We found only positive effects of suppressing rats and ants, and both positive and negative effects of suppressing mice and yellowjacket wasps, on the frequency of interactions between pollinators and plants. Model results predicted that predator eradication could increase the frequency of insect visitation to flowering species, in some cases by more than 90%. Previous results from the system showed that these flowering species produced significantly more seed when flowers were allowed to outcross than when flowers were bagged to exclude pollinators, indicating limited autogamy. Our findings highlight the potential benefits of suppression or eradication of invasive rodents, ants, and yellowjackets to reverse pollination disruption, particularly in locations with high numbers of at-risk plant species or already imperiled pollinator populations

    Advancing an interdisciplinary framework to study seed dispersal ecology

    Get PDF
    Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant’s life history and environmental variability that ultimately influences a population’s ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity

    Forest Regeneration on the Osa Peninsula, Costa Rica

    Get PDF
    Woody species diversity of secondary forest has the potential to converge with that found in old growth forest. This study is the first to examine multiple aspects of species and reproductive trait diversity, and their relationship to each other, across a successional chronosequence. Species richness and species diversity increases with increasing age of forest. Diaspore size and diversity as well as fruit size generally increased with increasing age of forest, but fruit size diversity did not. Abundance of animal-dispersed species increased whereas wind-dispersed species decreased in abundance over succession. Insect-pollinated individuals were most abundant overall. Diaspore diversity, pollination diversity, and reproductive trait richness were significantly correlated with species richness. Our results suggest that different community assembly processes involve different reproductive traits, and that secondary forest plots are on a trajectory to recover levels of diversity found in old growth forest. Remnant trees, left when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. This study is among the first to investigate the effects of remnant trees on nearby forest structure and biodiversity, 20-30 years post-abandonment. Regeneration of woody species beneath remnant trees does not significantly differ from reference trees in density or basal area, but species richness is significantly higher around remnant trees. The species composition around remnant trees is significantly different from that around reference trees, more closely resembles that of nearby old growth forest, and has a significantly greater proportion of old growth specialists and generalists. Although remnant trees may initially accelerate secondary forest growth, no evidence suggests that they locally affect stem density and basal area at later stages of regrowth. Remnant trees do, however, have a clear effect on the species composition of the surrounding forest, even after 20-30 years of forest growth

    Birds and Berries: Projecting the Responses of Seed Dispersal Networks to Climate Change

    Get PDF
    Climate change has caused species range shifts, with more predicted in coming decades. Range shifts could result in secondary threats such as spatial mismatch with mutualist partners and movement out of protected areas. We found that due to range shifts, shrub species richness will be lost at higher elevations, and species turnover will peak at middle elevations. Areas of bird species turnover will only partially overlap with areas of shrub species turnover, which could result in broken interactions between partners. Our projections suggest that climate change will result in clear winners and losers with some species gaining and others losing extent within a large protected area. Our findings add to growing evidence that currently protected species lose protection as they shift their ranges with changing climate. The species-area relationship is a foundational idea in ecology and conservation biology which has been used to predict the number of species lost with habitat destruction and climate change. We extend it to biotic interactions. We present theory for how interactions scale with space and provide mathematical relationships with the species-area curve. Our interactions-area curve accounts for connectance, a measure of interactions per species within a network. We find that the interactions-area curve from an empirical seed dispersal network fits our theoretical equation. Habitat loss can result in species loss from a mutualist network, causing additional species to become secondarily disconnected from the network. The number of disconnected species from habitat loss is poorly known. We simulated a null model network with random species loss according to the species-area relationship, and enumerated the disconnected species, varying both the number of species within the network and connectance. Our network simulations show more species detached at lower connectivity and with greater disparity in the species richness of the two mutualist groups. Our empirical example also displayed a wide range of outcomes: 0-5 species/10 km2 of simulated habitat loss. As available habitat is lost to land use conversion and climate change, community level repercussions are greater than predicted by simple species loss, but there is uncertainty in how severe these repercussions will be, from minimal to catastrophic

    Remnant trees affect species composition but not structure of tropical second-growth forest

    No full text
    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2–3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests (“control plots”). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields

    Remnant Trees Affect Species Composition but Not Structure of Tropical Second-Growth Forest

    Get PDF
    <div><p>Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2–3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests (“control plots”). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.</p></div

    Extrapolated species accumulation curves.

    No full text
    <p>Species accumulation curves for remnant and control plots, for all stems ≥5 cm DBH. All species accumulation curves are extrapolated to 76 individuals, the greatest number of individuals found in one plot (min individuals in a plot  = 30, mean  = 53.6). White dots indicate mean species richness for all remnant or control plots. The dashed line allows for comparison of remnant and control plot means.</p

    Effect of remnant tree or site on species structure and diversity.

    No full text
    <p>ANOVA results are shown for basal area, seedling density, tree density, light, species richness, species diversity, species evenness, and pairwise similarity to old-growth forest (df  = 1 and residual df  = 28 for all). Results with significant p-values are shown in bold.</p
    corecore