770 research outputs found

    Tilted two-fluid Bianchi type I models

    Full text link
    In this paper we investigate expanding Bianchi type I models with two tilted fluids with the same linear equation of state, characterized by the equation of state parameter w. Individually the fluids have non-zero energy fluxes w.r.t. the symmetry surfaces, but these cancel each other because of the Codazzi constraint. We prove that when w=0 the model isotropizes to the future. Using numerical simulations and a linear analysis we also find the asymptotic states of models with w>0. We find that future isotropization occurs if and only if w≀1/3w \leq 1/3. The results are compared to similar models investigated previously where the two fluids have different equation of state parameters.Comment: 14 pages, 3 figure

    1-2-3-flavor color superconductivity in compact stars

    Full text link
    We suggest a scenario where the three light quark flavors are sequentially deconfined under increasing pressure in cold asymmetric nuclear matter, e.g., as in neutron stars. The basis for our analysis is a chiral quark matter model of Nambu--Jona-Lasinio (NJL) type with diquark pairing in the spin-1 single flavor (CSL) and spin-0 two/three flavor (2SC/CFL) channels, and a Dirac-Brueckner Hartree-Fock (DBHF) approach in the nuclear matter sector. We find that nucleon dissociation sets in at about the saturation density, n_0, when the down-quark Fermi sea is populated (d-quark dripline) due to the flavor asymmetry imposed by beta-equilibrium and charge neutrality. At about 3n_0 u-quarks appear forming a two-flavor color superconducting (2SC) phase, while the s-quark Fermi sea is populated only at still higher baryon density. The hybrid star sequence has a maximum mass of 2.1 M_sun. Two- and three-flavor quark matter phases are found only in gravitationally unstable hybrid star solutions.Comment: 4 pages, 2 figures, to appear in the proceedings of Quark Matter 2008: 20th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions (QM 2008), Jaipur, India, 4-10 Feb 200

    Late-time behaviour of the Einstein-Vlasov system with Bianchi I symmetry

    Full text link
    The late-time behaviour of the Einstein-dust system is well understood for homogeneous spacetimes. For the case of Bianchi I we have been able to show that the late-time behaviour of the Einstein-Vlasov system is well approximated by the Einstein-dust system assuming that one is close to the unique stationary solution which is the attractor of the Einstein-dust system.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010, to appear in Journal of Physics: Conference Series (JPCS

    Late-time behaviour of the Einstein-Vlasov system with Bianchi I symmetry

    Full text link
    The late-time behaviour of the Einstein-dust system is well understood for homogeneous spacetimes. For the case of Bianchi I we have been able to show that the late-time behaviour of the Einstein-Vlasov system is well approximated by the Einstein-dust system assuming that one is close to the unique stationary solution which is the attractor of the Einstein-dust system.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010, to appear in Journal of Physics: Conference Series (JPCS

    Late-time behaviour of the Einstein-Vlasov system with Bianchi I symmetry

    Full text link
    The late-time behaviour of the Einstein-dust system is well understood for homogeneous spacetimes. For the case of Bianchi I we have been able to show that the late-time behaviour of the Einstein-Vlasov system is well approximated by the Einstein-dust system assuming that one is close to the unique stationary solution which is the attractor of the Einstein-dust system.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010, to appear in Journal of Physics: Conference Series (JPCS

    Perfect fluids and generic spacelike singularities

    Full text link
    We present the conformally 1+3 Hubble-normalized field equations together with the general total source equations, and then specialize to a source that consists of perfect fluids with general barotropic equations of state. Motivating, formulating, and assuming certain conjectures, we derive results about how the properties of fluids (equations of state, momenta, angular momenta) and generic spacelike singularities affect each other.Comment: Considerable changes have been made in presentation and arguments, resulting in sharper conclusion

    Recent progress constraining the nuclear equation of state from astrophysics and heavy ion reactions

    Full text link
    The quest for the nuclear equation of state (EoS) at high densities and/or extreme isospin is one of the longstanding problems of nuclear physics. Ab initio calculations for the nuclear many-body problem make predictions for the density and isospin dependence of the EoS far away from the saturation point of nuclear matter. On the other hand, in recent years substantial progress has been mode to constrain the EoS both, from the astrophysical side and from accelerator based experiments. Heavy ion experiments support a soft EoS at moderate densities while recent neutron star observations require a ``stiff'' high density behavior. Both constraints are discussed and shown to be in agreement with the predictions from many-body theory.Comment: Invited talk given at NPA III, Dresden, Germany, March 200

    3.9 angstrom structure of the nucleosome core particle determined by phase-plate cryo-EM

    No full text
    The Volta phase plate is a recently developed electron cryo-microscopy (cryo-EM) device that enables contrast enhancement of biological samples. Here we have evaluated the potential of combining phase-plate imaging and single particle analysis to determine the structure of a small protein-DNA complex. To test the method, we made use of a 200 kDa Nucleosome Core Particle (NCP) reconstituted with 601 DNA for which a high-resolution X-ray crystal structure is known. We find that the phase plate provides a significant contrast enhancement that permits individual NCPs and DNA to be clearly identified in amorphous ice. The refined structure from 26,060 particles has an overall resolution of 3.9 angstrom and the density map exhibits structural features consistent with the estimated resolution, including clear density for amino acid side chains and DNA features such as the phosphate backbone. Our results demonstrate that phase-plate cryo-EM promises to become an important method to determine novel near-atomic resolution structures of small and challenging samples, such as nucleosomes in complex with nucleosome-binding factors

    WISER Deliverable D3.3-2: The importance of invertebrate spatial and temporal variation for ecological status classification for European lakes

    Get PDF
    European lakes are affected by many human induced disturbances. In principle, ecological theories predict that the structure and functioning of benthic invertebrate assemblage (one of the Biological Quality Elements following the Water Framework Directive, WFD terminology) change in response to the level of disturbances, making this biological element suitable for assessing the status and management of lake ecosystems. In practice, to set up assessment systems based on invertebrates, we need to distiguish community changes that are related to human pressures from those that are inherent natural variability. This task is complicated by the fact that invertebrate communities inhabiting the littoral and the profundal zones of lakes are constrained by different factors and respond unevenly to distinct human disturbances. For example it is not clear yet how the invertebrates assemblages respond to watershed and shoreline alterations, nor the relative importance of spatial and temporal factors on assemblage dynamics and relative bioindicator values of taxa, the habitat constraints on species traits and other taxonomic and methodological limitations. The current lack of knowledge of basic features of invertebrate temporal and spatial variations is limiting the fulfillment of the EU-wide intercalibration of lake ecological quality assessment systems in Europe, and thus compromising the basis for setting the environmental objectives as required by the WFD. The aim of this deliverable is to provide a contribution towards the understanding of basic sources of spatial and temporal variation of lake invertebrate assemblages. The report is structured around selected case studies, manly involving the analysis of existing datasets collated within WISER. The case studies come from different European lake types in the Northern, Central, Alpine and Mediterranean regions. All chapters have an obvious applied objective and our aim is to provide to those dealing with WFD implementation at various levels useful information to consider when designing monitoring programs and / or invertebrate-based classification systems

    Core collapse supernovae in the QCD phase diagram

    Full text link
    We compare two classes of hybrid equations of state with a hadron-to-quark matter phase transition in their application to core collapse supernova simulations. The first one uses the quark bag model and describes the transition to three-flavor quark matter at low critical densities. The second one employs a Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model with parameters describing a phase transition to two-flavor quark matter at higher critical densities. These models possess a distinctly different temperature dependence of their transition densities which turns out to be crucial for the possible appearance of quark matter in supernova cores. During the early post bounce accretion phase quark matter is found only if the phase transition takes place at sufficiently low densities as in the study based on the bag model. The increase critical density with increasing temperature, as obtained for our PNJL parametrization, prevents the formation of quark matter. The further evolution of the core collapse supernova as obtained applying the quark bag model leads to a structural reconfiguration of the central proto-neutron star where, in addition to a massive pure quark matter core, a strong hydrodynamic shock wave forms and a second neutrino burst is released during the shock propagation across the neutrinospheres. We discuss the severe constraints in the freedom of choice of quark matter models and their parametrization due to the recently observed 2 solar mass pulsar and their implications for further studies of core collapse supernovae in the QCD phase diagram.Comment: 19 pages, 4 figures, CPOD2010 conference proceedin
    • 

    corecore