1,076 research outputs found

    Nucleobases and Prebiotic Molecules in Organic Residues Produced from the Ultraviolet Photo-Irradiation of Pyrimidine in NH3 and H2O+NH3 Ices

    Get PDF
    Although not yet identified in the interstellar medium (ISM), N-heterocycles including nucleobases the information subunits of DNA and RNA are present in carbonaceous chondrites, which indicates that molecules of biological interest can be formed in non-terrestrial environments via abiotic pathways. Recent laboratory experiments and ab-initio calculations have already shown that the irradiation of pyrimidine in pure H2O ices leads to the formation of a suite of oxidized pyrimidine derivatives, including the nucleobase uracil. In the present work, NH3:pyrimidine and H2O:NH3:pyrimidine ice mixtures with different relative proportions were irradiated with UV photons under astrophysically relevant conditions. Liquid- and gas-chromatography analysis of the resulting organic residues has led to the detection of the nucleobases uracil and cytosine, as well as other species of prebiotic interest such as urea and small amino acids. The presence of these molecules in organic residues formed under abiotic conditions supports scenarios in which extraterrestrial organics that formed in space and were subsequently delivered to telluric planets via comets and meteorites could have contributed to the inventory of molecules that triggered the first biological reactions on their surfaces

    Observations of lunar tides in the mesosphere and lower thermosphere at Arctic and middle latitudes

    No full text
    International audienceMeteor radars have been used to measure the horizontal winds in the mesosphere and lower thermosphere over Castle Eaton (52° N) in the UK and over Esrange (68° N) in Arctic Sweden. We consider a 16-year data set covering the interval 1988?2004 for the UK and a 6-year data set covering the interval 1999?2005 for the Arctic. The signature of the 12.42-h (M2) lunar tide has been identified at both locations. The lunar tide is observed to reach amplitudes as large as 11 ms?1. The Arctic radar has an interferometer and so allows investigation of the vertical structure of the lunar tide. At both locations the tide has maximum amplitudes in winter with a second autumnal maximum. The amplitude is found to increase with height over the 80?100 km height range observed. Vertical wavelengths are very variable, ranging from about 15 km in summer to more than 60 km in winter. Comparisons with the Vial and Forbes, 1994 model reveals generally good agreement, except in the case of the summer vertical wavelengths which are observed to be significantly shorter than predicted

    Infrared spectroscopy of solid CO-CO2 mixtures and layers

    Get PDF
    The spectra of pure, mixed and layered CO and CO2 ices have been studied systematically under laboratory conditions using infrared spectroscopy. This work provides improved resolution spectra (0.5 cm-1) of the CO2 bending and asymmetric stretching mode, as well as the CO stretching mode, extending the existing Leiden database of laboratory spectra to match the spectral resolution reached by modern telescopes and to support the interpretation of the most recent data from Spitzer. It is shown that mixed and layered CO and CO2 ices exhibit very different spectral characteristics, which depend critically on thermal annealing and can be used to distinguish between mixed, layered and thermally annealed CO-CO2 ices. CO only affects the CO2 bending mode spectra in mixed ices below 50K under the current experimental conditions, where it exhibits a single asymmetric band profile in intimate mixtures. In all other ice morphologies the CO2 bending mode shows a double peaked profile, similar to that observed for pure solid CO2. Conversely, CO2 induces a blue-shift in the peak-position of the CO stretching vibration, to a maximum of 2142 cm-1 in mixed ices, and 2140-2146 cm-1 in layered ices. As such, the CO2 bending mode puts clear constraints on the ice morphology below 50K, whereas beyond this temperature the CO2 stretching vibration can distinguish between initially mixed and layered ices. This is illustrated for the low-mass YSO HH46, where the laboratory spectra are used to analyse the observed CO and CO2 band profiles and try to constrain the formation scenarios of CO2.Comment: Accepted in A&

    Photochemistry of Pyrimidine in Astrophysical Ices: Formation of Nucleobases and Other Prebiotic Species

    Get PDF
    Nucleobases are N-heterocycles that are the informational subunits of DNA and RNA. They are divided into two molecular groups: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites, and their extraterrestrial origin confirmed by isotopic measurements. Although no N-heterocycles have ever been observed in the ISM, the positions of the 6.2- m interstellar emission features suggest a population of such molecules is likely to be present. However, laboratory experiments have shown that the ultraviolet (UV) irradiation of pyrimidine in ices of astrophysical relevance such as H2O, NH3, CH3OH, CH4, CO, or combinations of these at low temperature (less than or equal to 20 K) leads to the formation of several pyrimidine derivatives including the nucleobases uracil and cytosine, as well as precursors such as 4(3H)-pyrimidone and 4-aminopyrimidine. Quantum calculations on the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in pure H2O ices are in agreement with their experimental formation pathways.10 In those residues, other species of prebiotic interest such as urea as well as the amino acids glycine and alanine could also be identified. However, only very small amounts of pyrimidine derivatives containing CH3 groups could be detected, suggesting that the addition of methyl groups to pyrimidine is not an efficient process. For this reason, the nucleobase thymine was not observed in any of the samples. In this work, we study the formation of nucleobases and other photo-products of prebiotic interest from the UV irradiation of pyrimidine in ices containing H2O, NH3, CH3OH, and CO, mixed in astrophysical proportions

    Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR.

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is a commonly inherited renal disorder caused by defects in the PKD1 or PKD2 genes. ADPKD is associated with significant morbidity, and is a major underlying cause of end-stage renal failure (ESRF). Commonly, treatment options are limited to the management of hypertension, cardiovascular risk factors, dialysis, and transplantation when ESRF develops, although several new pharmacotherapies, including rapamycin, have shown early promise in animal and human studies. Evidence implicates polycystin-1 (PC-1), the gene product of the PKD1 gene, in regulation of the mTOR pathway. Here we demonstrate a mechanism by which the intracellular, carboxy-terminal tail of polycystin-1 (CP1) regulates mTOR signaling by altering the subcellular localization of the tuberous sclerosis complex 2 (TSC2) tumor suppressor, a gatekeeper for mTOR activity. Phosphorylation of TSC2 at S939 by AKT causes partitioning of TSC2 away from the membrane, its GAP target Rheb, and its activating partner TSC1 to the cytosol via 14-3-3 protein binding. We found that TSC2 and a C-terminal polycystin-1 peptide (CP1) directly interact and that a membrane-tethered CP1 protects TSC2 from AKT phosphorylation at S939, retaining TSC2 at the membrane to inhibit the mTOR pathway. CP1 decreased binding of 14-3-3 proteins to TSC2 and increased the interaction between TSC2 and its activating partner TSC1. Interestingly, while membrane tethering of CP1 was required to activate TSC2 and repress mTOR, the ability of CP1 to inhibit mTOR signaling did not require primary cilia and was independent of AMPK activation. These data identify a unique mechanism for modulation of TSC2 repression of mTOR signaling via membrane retention of this tumor suppressor, and identify PC-1 as a regulator of this downstream component of the PI3K signaling cascade

    Nucleobases and other Prebiotic Species from the Ultraviolet Irradiation of Pyrimidine in Astrophysical Ices

    Get PDF
    Nucleobases are N-heterocycles that are the informational subunits of DNA and RNA, and are divided into two families: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites and their extraterrestrial origin confirmed by isotope measurement. Although no Nheterocycles have ever been observed in the ISM, the positions of the 6.2-m interstellar emission features suggest a population of such molecules is likely to be present. In this work we study the formation of pyrimidine-based molecules, including nucleobases, as well as other species of prebiotic interest, from the ultraviolet (UV) irradiation of pyrimidine in combinations of H2O, NH3, CH3OH, and CH4 ices at low temperature, in order to simulate the astrophysical conditions under which prebiotic species may be formed in the interstellar medium and icy bodies of the Solar System. Experimental: Gas mixtures are prepared in a glass mixing line (background pressure approx. 10(exp -6)-10(exp -5) mbar). Relative proportions between mixture components are determined by their partial pressures. Gas mixtures are then deposited on an aluminum foil attached to a cold finger (15-20 K) and simultaneously irradiated with an H2 lamp emitting UV photons (Lyman and a continuum at approx.160 nm). After irradiation samples are warmed to room temperature, at which time the remaining residues are recovered to be analyzed with liquid and gas chromatographies. Results: These experiments showed that the UV irradiation of pyrimidine mixed in these ices at low temperature leads to the formation of several photoproducts derived from pyrimidine, including the nucleobases uracil and cytosine, as well as their precursors 4(3H)-pyrimidone and 4-aminopyrimidine (Fig. 1). Theoretical quantum calculations on the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in pure H2O ices are in agreement with their experimental formation pathways. In those residues, other species of prebiotic interest such as urea and the amino acids glycine and alanine could also be identified. However, no pyrimidine derivatives containing CH3 groups, including the third nucleobase thymine, could be identified, suggesting that the addition of methyl groups to pyrimidine is not an efficient process

    Formation of Nucleobases from the UV Photo-Irradiation of Pyrimidine in Astrophysical Ice Analogs

    Get PDF
    Astrochemistry laboratory simulations have shown that complex organic molecules including compounds of astrobiological interest can be formed under interstellarl/circumstellar conditions from the vacuum UV irradiation of astrophysical ice analogs containing H2O, CO, CO2, CH3OH, NH13, etc. Of all prebiotic compounds, the formation of amino acids under such experimental conditions has been the most extensively studied. Although the presence of amino acids in the interstellar medium (ISM) has yet to be confirmed, they have been detected in meteorites, indicating that biomolecules and/or their precursors can be formed under extraterrestrial, abiotic conditions. Nucleobases, the building blocks of DNA and RNA, as well as other 1V-heterocycles, have also been detected in meteorites, but like amino acids, they have yet to be observed in the ISM. In this work, we present an experimental study of the formation of pyrimidine-based compounds from the UV photo-irradiation of pyrimidine in ice mixtures containing H2O, NH3, and/or CH3OH at low temperature and pressure

    A high-resolution structure of the EF-hand domain of human polycystin-2.

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) affects over 1:1000 of the worldwide population and is caused by mutations in two genes, PKD1 and PKD2. PKD2 encodes a 968-amino acid membrane spanning protein, Polycystin-2 (PC-2), which is a member of the TRP ion channel family. The C-terminal cytoplasmic tail contains an EF-hand motif followed by a short coiled-coil domain. We have determined the structure of the EF-hand region of PC-2 using NMR spectroscopy. The use of different boundaries, compared with those used in previous studies, have enabled us to determine a high resolution structure and show that the EF hand motif forms a standard calcium-binding pocket. The affinity of this pocket for calcium has been measured and mutants that both decrease and increase its affinity for the metal ion have been created

    Ultraviolet Irradiation of Pyrimidine in Interstellar Ice Analogs: Formation and Photo-Stability of Nucleobases

    Get PDF
    Astrochemistry laboratory experiments recently showed that molecules of prebiotic interest can potentially form in space, as supported by the detection of amino acids in organic residues formed by the UV photolysis of ices simulating interstellar and cometary environments (H2O, CO, CO2, CH3OH, NH3, etc.). Although the presence of amino acids in the interstellar medium (ISM) is still under debate, experiments and the detection of amino acids in meteorites both support a scenario in which prebiotic molecules could be of extraterrestrial origin, before they are delivered to planets by comets, asteroids, and interplanetary dust particles. Nucleobases, the informational subunits of DNA and RNA, have also been detected in meteorites, although they have not yet been observed in the ISM. Thus, these molecules constitute another family of prebiotic compounds that can possibly form via abiotical processes in astrophysical environments. Nucleobases are nitrogen-bearing cyclic aromatic species with various functional groups attached, which are divided into two classes: pyrimidines (uracil, cytosine, and thymine) and purines (adenine and guanine). In this work, we study how UV irradiation affects pyrimidine mixed in interstellar ice analogs (H2O, NH3, CH3OH). In particular, we show that the UV irradiation of H2O:pyrimidine mixtures leads to the production of oxidized compounds including uracil, and show that both uracil and cytosine are formed upon irradiation of H2O:NH3:pyrimidine mixtures. We also study the photostability of pyrimidine and its photoproducts formed during these experiments
    • …
    corecore