6 research outputs found

    Avian Relationships with Wildfire at Two Dry Forest Locations with Different Historical Fire Regimes

    Get PDF
    Wildfire is a key factor influencing bird communities in western North American forests. We need to understand species and community responses to wildfire and how responses vary regionally to effectively manage for biodiversity in dry conifer forests. We compared avian relationships with wildfire burn severity between two locations of Arizona and Idaho. We predicted different responses to wildfire corresponding with regional differences in historical fire regime. We conducted point-count surveys for 3 years following wildfire (Arizona: 1997–1999; Idaho: 2008–2010) and used multispecies hierarchical models to analyze relationships of bird occupancy with burn severity. Consistent with our prediction for mixed-severity fire regimes characterizing the Idaho location, we observed proportionately more positive species occupancy relationships and, consequently, a positive species richness relationship with burn severity in Idaho. We also observed the opposite pattern in Arizona, which was congruent with our prediction for the low-severity fire regime characterizing that location. Cavity nesters and aerial insectivores occupied more severely burned sites following wildfire, corresponding with predicted increases in nesting substrate and foraging opportunities for these species. In contrast, canopy-nesting foliage gleaners and pine-seed consumers exhibited negative relationships with burn severity. Congruence with species life histories and with patterns reported in the literature suggests generality of observed patterns. We therefore suggest that optimal management strategies for maintaining avian diversity could differ regionally. Specifically, intensive fuels management may be ecologically less appropriate for promoting biodiversity in areas such as the Idaho location where mixed-severity wildfires and dense forest stands were historically more common

    Factors affecting lifetime reproduction, long-term territory-specific reproduction, and estimation of habitat quality in northern goshawks.

    No full text
    One measure of habitat quality is a species' demographic performance in a habitat and the gold standard metric of performance is reproduction. Such a measure, however, may be misleading if individual quality is a fitness determinant. We report on factors affecting lifetime reproduction (LR), the total number of lifetime fledglings produced by an individual, and long-term territory-specific reproduction in a multi-generational study of northern goshawks (Accipiter gentilis). LR increased with longer lifespans and more breeding attempts and was strongly correlated with the number of recruits in two filial generations indicating that LR was a good fitness predictor. Extensive differences in LR attested to heterogeneity in individual quality, a requisite for the ideal pre-emptive distribution model (IPD) of habitat settling wherein high quality individuals get the best habitats forcing lower quality individuals into poorer habitats with lower reproduction. In response to 7‒9-year prey abundance cycles, annual frequency of territory occupancy by breeders was highly variable and low overall with monotonic increases in vacancies through low prey years. Occupancy of territories by breeders differed from random; some appeared preferred while others were avoided, producing a right-skewed distribution of total territory-specific fledgling production. However, mean fledglings per nest attempt was only slightly lower in less versus more productive territories, and, contrary to IPD predictions of increases in annual territory-specific coefficients of variation (CV) in reproduction as breeder densities increase, the CV of production decreased as density increased. Rather than habitat quality per se, conspecific attraction elicited territory selection by prospecting goshawks as 70% of settlers comprised turnovers on territories, resulting in occupancy continuity and increased territory-specific reproduction. Top-producing territories had as few as 2 long-lived (high LR) and up to 6 short-lived (low LR) sequential breeders. While individual quality appeared to effect territory-specific heterogeneity in reproductive performance, our data suggests that differences in individual quality may be washed-out by a random settling of prospectors in response to conspecific attraction

    Spotted owls and forest fire: Comment

    Get PDF
    Western North American forest ecosystems are experiencing rapid changes in disturbance regimes because of climate change and land use legacies (Littell et al. 2018). In many of these forests, the accumulation of surface and ladder fuels from a century of fire suppression, coupled with a warming and drying climate, has led to increases in the number of large fires (Westerling 2016) and the proportion of areas burning at higher severity (Safford and Stevens 2017, Singleton et al. 2018). While the annual area burned by fire is still below historical levels (Taylor et al. 2016), some forest types in the west are burning at higher severities when compared to pre- European settlement periods (Mallek et al. 2013, Safford and Stevens 2017). As such, they face an increased risk of conversion to non-forest ecosystems (e.g., shrublands, non-native grasslands) following large, severe fires because of compromised seed sources, post-fire soil erosion and loss, high-severity re-burn, and climatic thresholds (Coppoletta et al. 2016, Stevens et al. 2017, Rissman et al. 2018, Shive et al. 2018, Wood and Jones 2019). Restoration methods such as mechanical thinning and prescribed and managed wildland fire that reduce accumulated surface and ladder fuels (e.g., removal of smalland medium-sized trees, especially non-fire adapted species) may reduce the spatial extent of severe fires and increase forest resilience to fire in a changing climate (Agee and Skinner 2005, Stephens et al. 2013, Hessburg et al. 2016, Tubbesing et al. 2019) and, in doing so, promote key ecosystem services (Hurteau et al. 2014, Kelsey et al. 2017, Wood and Jones 2019). ... The existing body of evidence suggests that spotted owls respond largely in a neutral or positive manner to lower-severity fire and smaller patches of high-severity fire that fall within the historical range of variability but that spotted owls can respond negatively to larger patches of high-severity fire. Thus, management actions that can demonstrably reduce the extent of severe fire within spotted owl habitat in a changing climate may contribute to owl conservation if those actions do not remove critical structural habitat elements positively associated with spotted owl vital rates (e.g., large, old trees) (Jones et al. 2016, 2018, Jones 2019). It is critical that future analyses examining the effects of fire on spotted owls provide sufficient context and nuance to ensure they will be beneficial to scientists and managers seeking to understand how to minimize the loss of essential owl nesting and roosting habitat to the increasing threat of high-severity fire in a changing climate
    corecore