12,963 research outputs found
Modelling with measures: Approximation of a mass-emitting object by a point source
We consider a linear diffusion equation on
, where
is a bounded domain. The time-dependent flux on the
boundary is prescribed. The aim of the
paper is to approximate the dynamics by the solution of the diffusion equation
on the whole of with a measure-valued point source in the origin
and provide estimates for the quality of approximation. For all time , we
derive an -bound on the difference in flux on the
boundary. Moreover, we derive for all an -bound and an
-bound for the difference of the solutions to the two
models
An investigation of some thermal and mechanical properties of a low-density phenolic-nylon ablation material Final report
Thermal and mechanical properties of phenolic nylon ablation material
Kinetic pinning and biological antifreezes
Biological antifreezes protect cold-water organisms from freezing. An example
are the antifreeze proteins (AFPs) that attach to the surface of ice crystals
and arrest growth. The mechanism for growth arrest has not been heretofore
understood in a quantitative way. We present a complete theory based on a
kinetic model. We use the `stones on a pillow' picture. Our theory of the
suppression of the freezing point as a function of the concentration of the AFP
is quantitatively accurate. It gives a correct description of the dependence of
the freezing point suppression on the geometry of the protein, and might lead
to advances in design of synthetic AFPs.Comment: 4 pages, 4 figure
Melting of Polydisperse Hard Disks
The melting of a polydisperse hard disk system is investigated by Monte Carlo
simulations in the semigrand canonical ensemble. This is done in the context of
possible continuous melting by a dislocation unbinding mechanism, as an
extension of the 2D hard disk melting problem. We find that while there is
pronounced fractionation in polydispersity, the apparent density-polydispersity
gap does not increase in width, contrary to 3D polydisperse hard spheres. The
point where the Young's modulus is low enough for the dislocation unbinding to
occur moves with the apparent melting point, but stays within the density gap,
just like for the monodisperse hard disk system. Additionally, we find that
throughout the accessible polydispersity range, the bound dislocation-pair
concentration is high enough to affect the dislocation unbinding melting as
predicted by Kosterlitz, Thouless, Halperin, Nelson and Young.Comment: 6 pages, 6 figure
First principles calculation of structural and magnetic properties for Fe monolayers and bilayers on W(110)
Structure optimizations were performed for 1 and 2 monolayers (ML) of Fe on a
5 ML W(110) substrate employing the all-electron full-potential linearized
augmented plane-wave (FP-LAPW) method. The magnetic moments were also obtained
for the converged and optimized structures. We find significant contractions
( 10 %) for both the Fe-W and the neighboring Fe-Fe interlayer spacings
compared to the corresponding bulk W-W and Fe-Fe interlayer spacings. Compared
to the Fe bcc bulk moment of 2.2 , the magnetic moment for the surface
layer of Fe is enhanced (i) by 15% to 2.54 for 1 ML Fe/5 ML W(110), and
(ii) by 29% to 2.84 for 2 ML Fe/5 ML W(110). The inner Fe layer for 2
ML Fe/5 ML W(110) has a bulk-like moment of 2.3 . These results agree
well with previous experimental data
Stellar population of the superbubble N206 in the LMC I. Analysis of the Of-type stars
Massive stars are the key agents of feedback. Consequently, quantitative
analysis of massive stars are required to understand how the feedback of these
objects shapes/ creates the large scale structures of the ISM. The giant HII
region N206 in the Large Magellanic Cloud contains an OB association that
powers a X-ray superbubble, serving as an ideal laboratory in this context. We
obtained optical spectra with the muti-object spectrograph FLAMES at the
ESO-VLT. When possible, the optical spectroscopy was complemented by UV spectra
from the HST, IUE, and FUSE archives. Detailed spectral classifications are
presented for our sample Of-type stars. For the quantitative spectroscopic
analysis we use the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The
physical parameters and nitrogen abundances of our sample stars are determined
by fitting synthetic spectra to the observations. The stellar and wind
parameters of nine Of-type stars are used to construct wind momentum,luminosity
relationship. We find that our sample follows a relation close to the
theoretical prediction, assuming clumped winds. The most massive star in the
N206 association is an Of supergiant which has a very high mass-loss rate. Two
objects in our sample reveal composite spectra, showing that the Of primaries
have companions of late O subtype. All stars in our sample have an evolutionary
age less than 4 million years, with the O2-type star being the youngest. All
these stars show a systematic discrepancy between evolutionary and
spectroscopic masses. All stars in our sample are nitrogen enriched. Nitrogen
enrichment shows a clear correlation with increasing projected rotational
velocities. The mechanical energy input from the Of stars alone is comparable
to the energy stored in the N206 superbubble as measured from the observed
X-ray and H alpha emission.Comment: Accepted for the pubblication in Astronomy & Astrophysic
- …