10,914 research outputs found
Low-metallicity massive single stars with rotation. II. Predicting spectra and spectral classes of chemically-homogeneously evolving stars
Context. Metal-poor massive stars are supposed to be progenitors of certain
supernovae, gamma-ray bursts and compact object mergers, potentially
contributing to the early epochs of the Universe with their strong ionizing
radiation. However, they remain mainly theoretical as individual spectroscopic
observations of such objects have rarely been carried out below the metallicity
of the SMC.
Aims. This work aims at exploring what our state-of-the-art theories of
stellar evolution combined with those of stellar atmospheres predict about a
certain type of metal-poor (0.02 Z) hot massive stars, the chemically
homogeneously evolving ones, called TWUIN stars.
Methods. Synthetic spectra corresponding to a broad range in masses (20-130
M) and covering several evolutionary phases from the zero-age
main-sequence up to the core helium-burning stage were computed.
Results. We find that TWUIN stars show almost no emission lines during most
of their {core hydrogen-burning} lifetimes. Most metal lines are completely
absent, including nitrogen. During their core helium-burning stage, lines
switch to emission and even some metal lines (oxygen and carbon, but still
almost no nitrogen) show up. Mass loss and clumping play a significant role in
line-formation in later evolutionary phases, particularly during core
helium-burning. Most of our spectra are classified as an early O type giant or
supergiant, and we find Wolf-Rayet stars of type WO in the core helium-burning
phase.
Conclusions. An extremely hot, early O type star observed in a
low-metallicity galaxy could be the outcome of chemically homogeneous evolution
and therefore the progenitor of a long-duration gamma-ray burst or a type
Ic supernova. TWUIN stars may play an important role in reionizing the Universe
due to their being hot without showing prominent emission lines during the
majority of their lifetimes.Comment: Accepted by Astronomy and Astrophysics. In Pres
Consistent description of NN and pi-N interactions using the solitary boson exchange potential
A unified description of NN and pi-N elastic scattering is presented in the
framework of the one solitary boson exchange potential (OSBEP). This model
already successfully applied to analyze NN scattering is now extended to
describe pi-N scattering while also improving its accuracy in the NN domain. We
demonstrate the importance of regularization of pi-N scattering amplitudes
involving Delta isobars and derivative meson-nucleon couplings, as this model
always yields finite amplitudes without recourse to phenomenological form
factors. We find an empirical scaling relation of the meson self interaction
coupling constants consistent with that previously found in the study of NN
scattering. Finally, we demonstrate that the OSBEP model does not contradict
the soft-pion theorems of pi-N scattering.Comment: 29 pages RevTeX, submitted to Phys. Rev. C, further information at
http://i04ktha.desy.d
Melting of Polydisperse Hard Disks
The melting of a polydisperse hard disk system is investigated by Monte Carlo
simulations in the semigrand canonical ensemble. This is done in the context of
possible continuous melting by a dislocation unbinding mechanism, as an
extension of the 2D hard disk melting problem. We find that while there is
pronounced fractionation in polydispersity, the apparent density-polydispersity
gap does not increase in width, contrary to 3D polydisperse hard spheres. The
point where the Young's modulus is low enough for the dislocation unbinding to
occur moves with the apparent melting point, but stays within the density gap,
just like for the monodisperse hard disk system. Additionally, we find that
throughout the accessible polydispersity range, the bound dislocation-pair
concentration is high enough to affect the dislocation unbinding melting as
predicted by Kosterlitz, Thouless, Halperin, Nelson and Young.Comment: 6 pages, 6 figure
Chemical kinetics and photochemical data for use in stratospheric modeling
As part of a series of evaluated sets, rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation are provided. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available from the Jet Propulsion Laboratory
SuperCDMS status from Soudan and plans for SNOLab
Matter, as we know it, makes up less than 5% of the Universe. Various astrophysical observations have confirmed that one quarter of the Universe and most of the matter content in the Universe is made up of Dark Matter. The nature of Dark Matter is yet to be discovered and is one of the biggest questions in Physics. Particle Physics combined with astrophysical measurements of the abundance gives rise to a Dark Matter candidate called Weakly Interacting Massive Particle (WIMP). The low density of WIMPs in the galaxies and the extremely weak nature of the interaction with ordinary matter make detection of the WIMP an extraordinarily challenging task, with abundant fakes from various radioactive and cosmogenic backgrounds with much stronger electromagnetic interaction. The extremely weak nature of the WIMP interaction dictates detectors that have extremely low naturally occurring radioactive background, a large active volume (mass) of sensitive detector material to maximize statistics, a highly efficient detector based rejection mechanism for the dominant electromagnetic background and sophisticated analysis techniques to reject any residual background. This paper describes the status of the SuperCDMS experiment
Potential of alternate wetting and drying irrigation practices for the mitigation of ghg emissions from rice fields: Two cases in central luzon (philippines)
Reducing methane (CH) emission from paddy rice production is an important target for many Asian countries in order to comply with their climate policy commitments. National greenhouse gas (GHG) inventory approaches like the Tier-2 approach of the Intergovernmental Panel on Climate Change (IPCC) are useful to assess country-scale emissions from the agricultural sector. In paddy rice, alternate wetting and drying (AWD) is a promising and well-studied water management technique which, as shown in experimental studies, can effectively reduce CH) emissions. However, so far little is known about GHG emission rates under AWD when the technique is fully controlled by farmers. This study assesses CH) and nitrous oxide (N)O) fluxes under continuous flooded (CF) and AWD treatments for seven subsequent seasons on farmers’ fields in a pumped irrigation system in Central Luzon, Philippines. Under AWD management, CH) emissions were substantially reduced (73% in dry season (DS), 21% in wet season (WS)). In all treatments, CH) is the major contributor to the total GHG emission and is, thus, identified as the driving force to the global warming potential (GWP). The contribution of N)O emissions to the GWP was higher in CF than in AWD, however, these only offset 15% of the decrease in CH) emission and, therefore, did not jeopardize the strong reduction in the GWP. The study proves the feasibility of AWD under farmers’ management as well as the intended mitigation effect. Resulting from this study, it is recommended to incentivize dissemination strategies in order to improve the effectiveness of mitigation initiatives. A comparison of single CH) emissions to calculated emissions with the IPCC Tier-2 inventory approach identified that, although averaged values showed a sufficient degree of accuracy, fluctuations for single measurement points have high variation which limit the use of the method for field-level assessments
Growth modes of Fe(110) revisited: a contribution of self-assembly to magnetic materials
We have revisited the epitaxial growth modes of Fe on W(110) and Mo(110), and
propose an overview or our contribution to the field. We show that the
Stranski-Krastanov growth mode, recognized for a long time in these systems, is
in fact characterized by a bimodal distribution of islands for growth
temperature in the range 250-700°C. We observe firstly compact islands
whose shape is determined by Wulff-Kaischev's theorem, secondly thin and flat
islands that display a preferred height, ie independant from nominal thickness
and deposition procedure (1.4nm for Mo, and 5.5nm for W on the average). We
used this effect to fabricate self-organized arrays of nanometers-thick stripes
by step decoration. Self-assembled nano-ties are also obtained for nucleation
of the flat islands on Mo at fairly high temperature, ie 800°C. Finally,
using interfacial layers and solid solutions we separate two effects on the
preferred height, first that of the interfacial energy, second that of the
continuously-varying lattice parameter of the growth surface.Comment: 49 pages. Invited topical review for J. Phys.: Condens. Matte
Chemical kinetics and photochemical data for use in stratospheric modeling evaluation Number 8
This is the eighth in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The primary application of the data is in the modeling of stratospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available from the Jet Propulsion Laboratory, Documentation Section, 111-116B, California Institute of Technology, Pasadena, California, 91109
Complex SCN8A DNA-abnormalities in an individual with therapy resistant absence epilepsy
Background De novo SCN8A missense mutations have been identified as a rare dominant cause of epileptic encephalopathy. We described a person with epileptic encephalopathy associated with a mosaic deletion of the SCN8A gene. Methods Array comparative genome hybridization was used to identify chromosomal abnormalities. Next Generation Sequencing was used to screen for variants in known and candidate epilepsy genes. A single nucleotide polymorphism array was used to test whether the SCN8A variants were in cis or in trans. Results We identified a de novo mosaic deletion of exons 2–14 of SCN8A, and a rare maternally inherited missense variant on the other allele in a woman presenting with absence seizures, challenging behavior, intellectual disability and QRS-fragmentation on the ECG. We also found a variant in SCN5A. Conclusions The combination of a rare missense variant with a de novo mosaic deletion of a large part of the SCN8A gene suggests that other possible mechanisms for SCN8A mutations may cause epilepsy; loss of function, genetic modifiers and cellular interference may play a role. This case expands the phenotype associated with SCN8A mutations, with absence epilepsy and regression in language and memory skills
- …