4,896 research outputs found

    High immunogenicity of virus-like particles (VLPs) decorated with Aeromonas salmonicida VapA antigen in rainbow trout

    Get PDF
    The Gram-negative bacterium A. salmonicida is the causal agent of furunculosis and used to be one of the most loss-causing bacterial infections in the salmonid aquaculture industry with a mortality rate of about 90% until the 1990s, when an inactivated vaccine with mineral oil as adjuvant was successfully implemented to control the disease. However, the use of this vaccine is associated with inflammatory side effects in the peritoneal cavity as well as autoimmune reactions in Atlantic salmon, and incomplete protection has been reported in rainbow trout. We here aimed at developing and testing a recombinant alternative vaccine based on virus-like particles (VLPs) decorated with VapA, the key structural surface protein in the outer A-layer of A. salmonicida. The VLP carrier was based on either the capsid protein of a fish nodavirus, namely red grouper nervous necrotic virus (RGNNV) or the capsid protein of Acinetobacter phage AP205. The VapA and capsid proteins were expressed individually in E. coli and VapA was fused to auto-assembled VLPs using the SpyTag/SpyCatcher technology. Rainbow trout were vaccinated/immunized with the VapA-VLP vaccines by intraperitoneal injection and were challenged with A. salmonicida 7 weeks later. The VLP vaccines provided protection comparable to that of a bacterin-based vaccine and antibody response analysis demonstrated that vaccinated fish mounted a strong VapA-specific antibody response. To our knowledge, this is the first demonstration of the potential use of antigen-decorated VLPs for vaccination against a bacterial disease in salmonids

    Identification of glycosaminoglycan binding regions in the Plasmodium falciparum encoded placental sequestration ligand, VAR2CSA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pregnancy malaria is caused by <it>Plasmodium falciparum</it>-infected erythrocytes binding the placental receptor chondroitin sulfate A (CSA). This results in accumulation of parasites in the placenta with severe clinical consequences for the mother and her unborn child. Women become resistant to placental malaria as antibodies are acquired which specifically target the surface of infected erythrocytes binding in the placenta. VAR2CSA is most likely the parasite-encoded protein which mediates binding to the placental receptor CSA. Several domains have been shown to bind CSA <it>in vitro</it>; and it is apparent that a VAR2CSA-based vaccine cannot accommodate all the CSA binding domains and serovariants. It is thus of high priority to define minimal ligand binding regions throughout the VAR2CSA molecule.</p> <p>Methods</p> <p>To define minimal CSA-binding regions/peptides of VAR2CSA, a phage display library based on the entire <it>var2csa </it>coding region was constructed. This library was screened on immobilized CSA and cells expressing CSA resulting in a limited number of CSA-binding phages. Antibodies against these peptides were affinity purified and tested for reactivity against CSA-binding infected erythrocytes.</p> <p>Results</p> <p>The most frequently identified phages expressed peptides residing in the parts of VAR2CSA previously defined as CSA binding. In addition, most of the binding regions mapped to surface-exposed parts of VAR2CSA. The binding of a DBL2X peptide to CSA was confirmed with a synthetic peptide. Antibodies against a CSA-binding DBL2X peptide reacted with the surface of infected erythrocytes indicating that this epitope is accessible for antibodies on native VAR2CSA on infected erythrocytes.</p> <p>Conclusion</p> <p>Short continuous regions of VAR2CSA with affinity for multiple types of CSA were defined. A number of these regions localize to CSA-binding domains and to surface-exposed regions within these domains and a synthetic peptide corresponding to a peptide sequence in DBL2 was shown to bind to CSA and not to CSC. It is likely that some of these epitopes are involved in native parasite CSA adhesion. However, antibodies directed against single epitopes did not inhibit parasite adhesion. This study supports phage display as a technique to identify CSA-binding regions of large proteins such as VAR2CSA.</p

    A proof-of-concept study for the design of a VLP-based combinatorial HPV and placental malaria vaccine

    Get PDF
    Abstract In Africa, cervical cancer and placental malaria (PM) are a major public health concern. There is currently no available PM vaccine and the marketed Human Papillomavirus (HPV) vaccines are prohibitively expensive. The idea of a combinatorial HPV and PM vaccine is attractive because the target population for vaccination against both diseases, adolescent girls, would be overlapping in Sub-Saharan Africa. Here we demonstrate proof-of-concept for a combinatorial vaccine utilizing the AP205 capsid-based virus-like particle (VLP) designed to simultaneously display two clinically relevant antigens (the HPV RG1 epitope and the VAR2CSA PM antigen). Three distinct combinatorial VLPs were produced displaying one, two or five concatenated RG1 epitopes without obstructing the VLP’s capacity to form. Co-display of VAR2CSA was achieved through a split-protein Tag/Catcher interaction without hampering the vaccine stability. Vaccination with the combinatorial vaccine(s) was able to reduce HPV infection in vivo and induce anti-VAR2CSA IgG antibodies, which inhibited binding between native VAR2CSA expressed on infected red blood cells and chondroitin sulfate A in an in vitro binding-inhibition assay. These results show that the Tag/Catcher AP205 VLP system can be exploited to make a combinatorial vaccine capable of eliciting antibodies with dual specificity

    A vaccine displaying a trimeric influenza-A HA stem protein on capsid-like particles elicits potent and long-lasting protection in mice

    Get PDF
    Due to constant antigenic drift and shift, current influenza-A vaccines need to be redesigned and administered annually. A universal flu vaccine (UFV) that provides long-lasting protection against both seasonal and emerging pandemic influenza strains is thus urgently needed. The hemagglutinin (HA) stem antigen is a promising target for such a vaccine as it contains neutralizing epitopes, known to induce cross-protective IgG responses against a wide variety of influenza subtypes. In this study, we describe the development of a UFV candidate consisting of a HAstem trimer displayed on the surface of rigid capsid-like particles (CLP). Compared to soluble unconjugated HAstem trimer, the CLP-HAstem particles induced a more potent, long-lasting immune response and were able to protect mice against both homologous and heterologous H1N1 influenza challenge, even after a single dose

    Assessment of tumor redox status through (S)-4-(3-[18F]fluoropropyl)-L-glutamic acid positron emission tomography imaging of system xc- activity

    Get PDF
    The cell's endogenous antioxidant system is vital to maintenance of redox homeostasis. Despite its central role in normal and pathophysiology, no non-invasive tools exist to measure this system in patients. The cystine/glutamate antiporter system xc- maintains the balance between intracellular reactive oxygen species and antioxidant production through the provision of cystine, a key precursor in glutathione biosynthesis. Here we show that tumor cell retention of a system xc--specific positron emission tomography radiotracer, (S)-4-(3-[18F]fluoropropyl)-L-glutamic acid ([18F]FSPG), decreases in proportion to levels of oxidative stress following treatment with a range of redox-active compounds. The decrease in [18F]FSPG retention correlated with a depletion of intracellular cystine resulting from increased de novo glutathione biosynthesis, shown through [U-13C6, U-15N2]cystine isotopic tracing. In vivo, treatment with the chemotherapeutic doxorubicin decreased [18F]FSPG tumor uptake in a mouse model of ovarian cancer, coinciding with markers of oxidative stress but preceding tumor shrinkage and decreased glucose utilization. Having already been used in pilot clinical trials, [18F]FSPG PET could be rapidly translated to the clinic as an early redox indicator of tumor response to treatment

    Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting

    Get PDF
    TALENs are important new tools for genome engineering. Fusions of transcription activator-like (TAL) effectors of plant pathogenic Xanthomonas spp. to the FokI nuclease, TALENs bind and cleave DNA in pairs. Binding specificity is determined by customizable arrays of polymorphic amino acid repeats in the TAL effectors. We present a method and reagents for efficiently assembling TALEN constructs with custom repeat arrays. We also describe design guidelines based on naturally occurring TAL effectors and their binding sites. Using software that applies these guidelines, in nine genes from plants, animals and protists, we found candidate cleavage sites on average every 35 bp. Each of 15 sites selected from this set was cleaved in a yeast-based assay with TALEN pairs constructed with our reagents. We used two of the TALEN pairs to mutate HPRT1 in human cells and ADH1 in Arabidopsis thaliana protoplasts. Our reagents include a plasmid construct for making custom TAL effectors and one for TAL effector fusions to additional proteins of interest. Using the former, we constructed de novo a functional analog of AvrHah1 of Xanthomonas gardneri. The complete plasmid set is available through the non-profit repository AddGene and a web-based version of our software is freely accessible online

    HER2 cancer vaccine optimization by combining Drosophila S2 insect cell manufacturing with a novel VLP-display technology

    Get PDF
    Breast cancer is a widespread oncology indication affecting more than 1.3 million people worldwide annually, 20%-30% of which are HER2 positive. HER2 is a tyrosine kinase receptor that is frequently overexpressed in several solid-tumor cancers (incl. breast, prostate, gastric, esophageal and osteosarcoma) where it denotes an aggressive phenotype, high metastatic rate, and poor prognosis. In a human context, passive HER2-targeted immunotherapy using monoclonal antibodies (mAb, e.g. Trastuzumab and Pertuzumab) has proven to be an effective treatment modality, which has dramatically improved clinical outcomes. Unfortunately, mAb therapy is very expensive and the repeated injections of high doses can be associated with severe side-effects that reduce efficacy. Vaccines are highly cost-effective, but overall progress in development of anti-cancer vaccines based on cancer-associated antigens (e.g. HER2) has been hampered by inherent immune-tolerogenic mechanisms rendering the immune system incapable of reacting against the body’s own cells/proteins (i.e. self-antigens). Consequently, many attempts to develop anti-cancer vaccines have failed in clinical trials due to insufficient immunogenicity. To circumvent this central issue, we have developed a proprietary virus-like particle (VLP)-based vaccine delivery platform. Notably, the VLP-platform is currently the only available technology to effectively facilitate multivalent “virus-like” display of large/complex vaccine antigens. This is key to overcome immune-tolerance and enable induction of therapeutically potent antibody responses directed against cancer-associated self-antigens. In this talk I will discuss the non-viral Drosophila S2 insect cell production system and how it was applied to the production of hHer2/neu antigen, including using advanced production methods such as perfusion for clinical material manufacture. Furthermore, I will present our data from a transgenic mouse model for spontaneous breast cancer development, where high-density display of the HER2 extracellular domain on the surface of virus-like particles (VLPs) enables induction of therapeutically potent anti-HER2 responses. Split-protein tag/catcher conjugation was used to facilitate directional covalent attachment of HER2 to the surface of icosahedral bacteriophage-derived VLPs, thereby harnessing the VLP platform to effectively overcome B-cell tolerance. Vaccine efficacy was demonstrated both in prevention and therapy of mammary carcinomas in HER2 transgenic mice. Thus, the HER2-VLP vaccine shows promise as a new strategy for treatment of HER2-positive cancer. The modular VLP system may also represent an effective tool for development of self-antigen based vaccines against other non-communicable diseases

    Measurement and Interpretation of Fermion-Pair Production at LEP energies above the Z Resonance

    Full text link
    This paper presents DELPHI measurements and interpretations of cross-sections, forward-backward asymmetries, and angular distributions, for the e+e- -> ffbar process for centre-of-mass energies above the Z resonance, from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are consistent with the predictions of the Standard Model and are used to study a variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering and several models which include physics beyond the Standard Model: the exchange of Z' bosons, contact interactions between fermions, the exchange of gravitons in large extra dimensions and the exchange of sneutrino in R-parity violating supersymmetry.Comment: 79 pages, 16 figures, Accepted by Eur. Phys. J.

    A Determination of the Centre-of-Mass Energy at LEP2 using Radiative 2-fermion Events

    Full text link
    Using e+e- -> mu+mu-(gamma) and e+e- -> qqbar(gamma) events radiative to the Z pole, DELPHI has determined the centre-of-mass energy, sqrt{s}, using energy and momentum constraint methods. The results are expressed as deviations from the nominal LEP centre-of-mass energy, measured using other techniques. The results are found to be compatible with the LEP Energy Working Group estimates for a combination of the 1997 to 2000 data sets.Comment: 20 pages, 6 figures, Accepted by Eur. Phys. J.
    corecore