26 research outputs found

    Capsulata edenensis gen. et sp. nov. a New Cestode with an Unusual Type of Growth, from Limosa lapponica (L.); with Systematic Notes on the Genera Southwellia Moghe, 1925 and Malika Woodland, 1929

    Get PDF
    Description: The specimens were collected from three Bartailed Godwits shot in the winters of 1956 and 1957. The description below applies mainly to the first infestation found. There are certain differences between the infestations which are noted later. There were up to 150 individuals in each infestation, varying from immature worms consisting of a scolex and a few proglottides to mature strobilas containing some 300 segments and reaching a length of 75 mm. The maximum breadth of the strobila is 1·8 mm. The onset of maturity is accompanied by a marked increase in the breadth of the strobila and the mature proglottides are broader than lon

    Incidental Findings on Brain MR Imaging in Older Community-Dwelling Subjects Are Common but Serious Medical Consequences Are Rare:A Cohort Study

    Get PDF
    Incidental findings in neuroimaging occur in 3% of volunteers. Most data come from young subjects. Data on their occurrence in older subjects and their medical, lifestyle and financial consequences are lacking. We determined the prevalence and medical consequences of incidental findings found in community-dwelling older subjects on brain magnetic resonance imaging.Prospective cohort observational study.Single centre study with input from secondary care.Lothian Birth Cohort 1936, a study of cognitive ageing.Incidental findings identified by two consultant neuroradiologists on structural brain magnetic resonance imaging at age 73 years; resulting medical referrals and interventions.PREVALENCE OF INCIDENTAL FINDINGS BY INDIVIDUAL CATEGORIES: neoplasms, cysts, vascular lesions, developmental, ear, nose or throat anomalies, by intra- and extracranial location; visual rating of white matter hyperintensities and brain atrophy.There were 281 incidental findings in 223 (32%) of 700 subjects, including 14 intra- or extracranial neoplasms (2%), 15 intracranial vascular anomalies (2%), and 137 infarcts or haemorrhages (20%). Additionally, 153 had moderate/severe deep white matter hyperintensities (22%) and 176 had cerebral atrophy at, or above, the upper limit of normal (25%) compared with a normative population template. The incidental findings were unrelated to white matter hyperintensities or atrophy; about a third of subjects had both incidental findings and moderate or severe WMH and a quarter had incidental findings and atrophy. The incidental findings resulted in one urgent and nine non-urgent referrals for further medical assessment, but ultimately in no new treatments.In community-dwelling older subjects, incidental findings, including white matter hyperintensities and atrophy, were common. However, many findings were not of medical importance and, in this age group, most did not result in further assessment and none in change of treatment

    Une espèce nouvelle du genre

    No full text

    Resultados inesperados de medición directa, con una microbalanza de torsión en un sistema cerrado, de las tasas de calcificación de los corales Agaricia agaricites (Scleractinia:Agariicidae) y concomitantes cambios de pH en el medio del mar

    No full text
    Ocean acidification is impacting the calcification of corals, but the mechanisms of calcification are still unclear. To explore the relationship between calcification and pH, small pieces of coral were suspended from a torsion microbalance in gently stirred, temperature controlled, seawater in a closed chamber. Net calcification rate and pH were continuously monitored while light, temperature or pH could be manipulated. The coral pieces were from the edges of thin plates of Agaricia agaricites and were studied alive and freshly collected. Unexpectedly, when calcification was taking place (n=9, 0.082 mg.hr-1.cm-2), as determined by weight increase, the pH of the surrounding seawater medium changed little (n=10, -0.0047 pH units.hr-1.cm-2). When calcification was not taking place the decrease of seawater pH was an order of magnitude higher, -0.013 pH units.hr-1.cm-2. This is the opposite of what is expected when calcium carbonate (CaCO3) forms. Similarly, fresh skeleton initially showed no change of pH in the seawater medium although the rates of weight gain were high (upto 1.0 mg hr-1.cm-2). After 10 hours, as the rate of deposition decreased following a generalized Michaelis-Menten growth curve, the pH began to decrease dramatically indicating an increase of CO2 in the seawater. These unexpected results can be explained if unstable calcium bicarbonate (Ca(HCO3)2) is formed in the organic matrix/carbonic anhydrase surface and slowly transforms later to CaCO3. Pieces of living coral monitored in the chamber for 30 hours gained weight during the day and loss it at night. The loss would be consistent with the transformation of Ca(HCO3)2 to CaCO3 with the release of CO2. The mean calcification rate of live coral was greater (n=8, p=0.0027) in high light (120 μmol.s-1.m-2) at 0.098 mg.hr-1.cm-2, compared to 0.063 mg.hr-1.cm-2 in low light (12 μmol.s-1.m-2). However, at the same time the mean rate of pH change was -0.0076 under low light compared to -0.0030 under high light (n=8, p=0.0001). The difference can be explained by CO2 being used for photosynthesis by zooxanthellae. The deposition rate of live coral was not affected by the addition of phosphate but the rate of weight gain by the freshly collected skeleton was strongly enhanced by phosphate. These results indicate that care should be applied in the application of the alkalinity anomaly technique for the measurement of calcification in corals. Rev. Biol. Trop. 62 (Suppl. 3): 25-38. Epub 2014 September 01.La acidificación del océano está impactando la calcificación de los corales, pero los mecanismos de la calcificación son aún inciertos. Para explorar la relación entre la calcificación y pH, pequeños trozos de coral fueron suspendidos en una microbalanza de torsión en agitado suave, temperatura controlada, y agua de mar en una cámara cerrada. La tasa de calcificación neta y el pH se monitorearon continuamente mientras que la luz, temperatura o pH podían ser manipulados. Las piezas de coral eran de los bordes de placas finas de Agaricia agaricites y se estudiaron vivos y recién colectados. Inesperadamente, cuando la calcificación (n= 9, 0.082 mg.hr-1.cm-2) se estaba dando, según lo determinado por el aumento de peso, el pH del agua de mar circundante cambió poco (n = 10,-0.0047 pH units.hr-1.cm-2). Durante los períodos cuando la calcificación no se estaba dando la disminución del pH del agua de mar era un orden de magnitud mayor, -0.013 pH units.hr-1.cm-2. Esto es exactamente lo contrario de lo que se espera cuando se forma carbonato de calcio (CaCO3). Del mismo modo un esqueleto recién colectado al inicio no mostró cambios de pH en el agua de mar aunque eran muy altas las tasas de ganancia de peso (hasta 1.0 mg hr-1.cm-2). Después de 10 horas, la tasa de deposición disminuyó hasta seguir una curva de crecimiento generalizada de Michaelis-Menten, el pH comenzó a disminuir drásticamente, lo que indica un aumento de CO2 en el agua de mar. Estos resultados inesperados pueden explicarse si el bicarbonato de calcio inestable (Ca(HCO3)2) se forma en la superficie de la anhidrasa carbónica/matriz orgánica y lentamente se transforma más tarde a CaCO3. Piezas de coral vivo vigiladas en la cámara durante 30 horas demostraron un patrón de ganancia de peso durante el día y de pérdida en la noche. La pérdida sería coherente con la transformación de la Ca (HCO3)2 a CaCO3 con el lanzamiento de CO2. La tasa de calcificación media de coral vivo fue mayor (n= 8, p= 0.0027) en luz alta (120 μmol.s-1.m-2) a 0.098 mg.hr-1.cm-2, en comparación con 0.063 mg.hr-1.cm-2 en condiciones de poca luz (12 μmol.s-1.m-2). Sin embargo, al mismo tiempo la tasa media de cambio de pH fue de -0.0076 bajo luz baja en comparación con -0.0030 bajo luz alta (n= 8, p= 0,0001). La diferencia puede explicarse porque el CO2 está siendo utilizado para la fotosíntesis por zooxantelas. La tasa de deposición de coral vivo no fue afectada por la adición de fosfato pero la tasa de ganancia de peso de los esqueletos recién colectados era fuertemente reforzada por fosfato. Estos resultados indican que la atención debe aplicarse en la aplicación de la técnica de alcalinidad anormal para la medición de la calcificación de los corales

    Light driven lipid peroxidation of coral membranes and a suggested role in calcification

    No full text
    La bomba de calcio Ca-ATPase de la membrana de plasma mantiene bajas las concentraciones de iones de calcio (Ca2+) en las células vivas. La presencia de una bomba de calcio en los corales ha sido confirmada, y su fallo en el funcionamiento debido al cambio de temperatura es lo que conlleva al blanqueamiento de coral. Existe también abundante evidencia obtenida de los proporciones de los isótopos estables del calcio en el esqueleto, de que hay una bomba de calcio involucrada en la calcificación del coral. Como se sabe, el peróxido de hidrógeno (H2O2) es generado por las zooxantelas durante la fotosíntesis y pasa fácilmente a través de las membranas celulares. Además, el H2O2 produce la peroxidación de lípidos de la membrana plasmática y lo hace permeable al Ca2+. En el presente estudio, se midió la peroxidación lípida en los tejidos de Agaricia agaricites. Los peróxidos lípidos en la luz se duplicaban, de 5.83 a 11.23 μMol.cm-2 (n=17), durante las primeras 3 a 4 horas, y luego, disminuían lentamente durante las siguientes 4 horas. El glutatión, que en muchos organismos actúa como parte del sistema de reparo de la peroxidación de los lípidos, fue encontrado en niveles significativos, 79 μg.cm-2 (n=14), e indica probablemente la reducción observada en los niveles de peróxido lípido. Se sugiere que la peroxidación de lípidos hace que la membrana de plasma permita la fuga de Ca2+, y por lo tanto, que el Ca2+ tenga una ruta para entrar en las células de la capa calcioblástica. El modelo de calcificación según Adkins et al. (2003), presenta cómo la calcificación se lleva a cabo entre el líquido calcificante extracellular (ECF: extracellular calfifying fluid), que está en la capa calcioblástica, y el esqueleto. La bomba de calcio Ca-ATPase dirige la calcificación en la medida en que transporta el Ca2+ al ECF y establece los gradientes de pH y dióxido de carbono (CO2) que permiten la difusión pasiva del CO2 y la formación de carbonato de calcio. Se sugiere que, en la luz, el H2O2 producido por las zooxantelas hace que las membranas permitan la fuga de Ca2+. La bomba de calcio tiene que trabajar más para mantener bajos los niveles internos de calcio, y consecuentemente, más Ca2+ sería transportado activamente al ECF para ser depositado como carbonato de calcio

    Une espèce nouvelle du genre <i>Proterogynotaenia</i> Fuhrmann

    Full text link

    <i>Capsulata edenensis</i> gen. et sp. nov. a New Cestode with an Unusual Type of Growth, from <i>Limosa lapponica</i> (L.); with Systematic Notes on the Genera <i>Southwellia</i> Moghe, 1925 and <i>Malika</i> Woodland, 1929

    Get PDF
    Description: The specimens were collected from three Bartailed Godwits shot in the winters of 1956 and 1957. The description below applies mainly to the first infestation found. There are certain differences between the infestations which are noted later. There were up to 150 individuals in each infestation, varying from immature worms consisting of a scolex and a few proglottides to mature strobilas containing some 300 segments and reaching a length of 75 mm. The maximum breadth of the strobila is 1·8 mm. The onset of maturity is accompanied by a marked increase in the breadth of the strobila and the mature proglottides are broader than long.</jats:p

    Preliminary results with a torsion microbalance indicate that carbon dioxide and exposed carbonic anhydrase in the organic matrix are the basis of calcification on the skeleton surface of living corals

    No full text
    Ocean acidification is altering the calcification of corals, but the mechanism is still unclear. To explore what controls calcification, small pieces from the edges of thin plates of Agaricia agaricites were suspended from a torsion microbalance into gently stirred, temperature controlled, seawater. Net calcification rates were monitored while light, temperature and pH were manipulated singly. The living coral pieces were sensitive to changes in conditions, especially light, and calcification was often suspended for one or two hours or overnight. The mean calcification rate increased from 0.06 in the dark to 0.10 mg.h-1.cm-2 (T test, n=8, p&lt;0.01) in low light (15 μmol.s-1.m-2) and showed a positive linear relationship with temperature. With a reduction of mean pH from 8.2 to 7.6 the mean calcification rate in the light (65 μmol.s-1.m-2) increased from 0.19 to 0.28 mg.h-1.cm-2 (T test, n=8, p&lt;0.05) indicating a dependency on carbon dioxide. After waterpiking and exposure of the skeletal surface/organic matrix to seawater, calcification showed an astonishing initial increase of more than an order of magnitude then decreased following a non-linear generalised Michaelis-Menten growth curve and reached a steady rate. Calcification rate of the freshly waterpiked coral was not influenced by light and was positively correlated with temperature. For a mean pH reduction from 8.1 to 7.6 the mean calcification rate increased from 0.18 to 0.32 mg.h-1.cm-2 (T test, n=11, p&lt;0.02) again indicating a dependency on carbon dioxide. Calcification ceased in the presence of the carbonic anhydrase inhibitor azolamide. Staining confirmed the presence of carbonic anhydrase, particularly on the ridges of septae. After immersion of waterpiked corals in seawater for 48 hours weight gain and loss became linear and positively correlated to temperature. When the mean pH was reduced from 8.2 to 7.5 the mean rate of weight gain decreased from 0.25 to 0.13 mg.h-1.cm-2 (T test, n=6, p&lt;0.05) indicating a dependence on carbonate. At a pH of 6.5 the skeleton lost weight at a rate of 1.8 mg.h-1.cm-2. The relationship between net calcification and pH (n=2) indicates that wt gain turns to loss at pH 7.4. These experiments confirm that calcification is a two-step process, involving secretion of a layer of organic matrix incorporating carbonic anhydrase to produce an active calcifying surface which uses carbon dioxide rather than carbonate. It is also unlikely that the calcifying surface is in direct contact with seawater. Inorganic deposition or dissolution of the skeleton in exposed dead areas of coral is a different phenomenon and is carbonate related. The wide range in results from this and other studies of calcification rate and carbon dioxide may be explainable in terms of the ratio of “live” to “dead” areas of coralLa acidificaión de los océanos está alterando la calcificón de los corales. Sin embargo, el mecanismo no es todavía claro. Para explorar que controla la calcificación piezas pequeñas del borde de láminas delgadas de Agaricia agaricites fueron suspendidas de una microbalanza de torsión en agua de mar ligeramente agitada y con temperatura controlada. La tasa neta de calcificación fue monitoreada mientras se manipulaba la luz, temperatura y pH. Las piezas de coral vivo fueron sensibles a cambios en las condiciones, especialmente de luz, y la calcificación se suspendía por una o dos horas o de un día para otro. La tasa media de calcificación aumentó de 0.06 en la oscuridad a 0.10 mg h-1 cm-2 (prueba T, n=8, p&lt;0.01) en luminosidad baja (15 μmol s-1 m-2) y mostró una relación lineal positiva con la temperatura. Con una reducción en el pH promedio de 8.2 a 7.6 la tasa de calcificación media en la luz (65 μmol.s-1.m-2) aumentó de 0.19 a 0.28 mg h-1 cm-2 (prueba T, n=8, p&lt;0.05) indicando una dependencia de dióxido de carbono. Después de remover el tejido y exponer la superficie de los esqueletos/matriz orgánica a agua de mar, la calcificación tiene un marcada aumento inicial de más de un orden de magnitud y después decrese siguiendo una curva generalizada Michaelis-Menten de crecimiento no-lineal hasta alcanzar una tasa estable. La tasa de calcificación de esqueletos recién limpiados no estaba influenciada por la luz y estaba positivamente correlacionado con la temperatura. Pra una reducción media de pH de 8.1 a 7.6 la tasa media de calcificaión aumentó de 0.18 a 0.32 mg h-1 cm-2 (prueba T, n=11, p&lt;0.02) de nuevo indicando la dependencia en el dióxido de carbono. La calcificación cesó en la presencia de azolamida un inhibidor de la anhidrasa carbónica. Tinciones confirmaron la presencia de anhidrasa carbónica, particularmente en las crestas de los septos. Después de sumergir esqueletos sin tejido en agua de mar por 48 horas la ganancia y pérdida de peso se volvió lineal y relacionada positivamente con la temperatura. Cuando el pH promedio se reducía de 8.2 a 7.5 la tasa media de ganacia de peso decrecía de 0.25 a 0.13 mg h-1 cm-2 (prueba T, n=6, p&lt;0.05) indicando una dependencia en carbonato. A un pH de 6.5 la tasa de pérdida de peso esquelético fue de 1.8 mg h-1 cm-2. La relación entre calcificaión neta y pH (n=2) indican que la gancia de peso se vuele pérdida a pH 7.4. Estos experimentos confirman que la calcificación es un proceso de dos pasos, involucrando la secreción de la capa de matriz orgánica que incorpora anhidrasa carbónica para producir una superficie de calcificación activa que usa dióxido de carbono en vez de carbonato. Es también poco probable que la superficie de calcificación esté en contacto directo con el agua de mar. La depositación o disolución inorgánica del esqueleto en áreas expuestas de corales muertos en un fenómeno diferente y está relacionado a los carbonatos. El gran ámbito de resultados de este y otros estudios sobre tasas de calcificación y dióxido de carbono pueden ser explicados en términos de la razón entre las zonas vivas y muertas de los corales

    Preliminary results with a torsion microbalance indicate that carbon dioxide and exposed carbonic anhydrase in the organic matrix are the basis of calcification on the skeleton surface of living corals

    No full text
    Ocean acidification is altering the calcification of corals, but the mechanism is still unclear. To explore what controls calcification, small pieces from the edges of thin plates of Agaricia agaricites were suspended from a torsion microbalance into gently stirred, temperaturecontrolled, seawater. Net calcification rates were monitored while light, temperature and pH were manipulated singly. The living coral pieces were sensitive to changes in conditions, especially light, and calcification was often suspended for one or two hours or overnight. The mean calcification rate increased from 0.06 in the dark to 0.10 mg.h-1.cm-2 (T test, n=8, p<0.01) in low light (15 μmol.s-1.m-2) and showed a positive linear relationship with temperature. With a reduction of mean pH from 8.2 to 7.6 the mean calcification rate in the light (65 μmol.s-1.m-2) increased from 0.19 to 0.28 mg.h-1.cm-2 (T test, n=8, p<0.05) indicating a dependency on carbon dioxide. After waterpiking and exposure of the skeletal surface/organic matrix to seawater, calcification showed an astonishing initial increase of more than an order of magnitude then decreased following a non-linear generalised Michaelis-Menten growth curve and reached a steady rate. Calcification rate of the freshly waterpiked coral was not influenced by light and was positively correlated with temperature. For a mean pH reduction from 8.1 to 7.6 the mean calcification rate increased from 0.18 to 0.32 mg.h-1.cm-2 (T test, n=11, p<0.02) again indicating a dependency on carbon dioxide. Calcification ceased in the presence of the carbonic anhydrase inhibitor azolamide. Staining confirmed the presence of carbonic anhydrase, particularly on the ridges of septae. After immersion of waterpiked corals in seawater for 48 hours weight gain and loss became linear and positively correlated to temperature. When the mean pH was reduced from 8.2 to 7.5 the mean rate of weight gain decreased from 0.25 to 0.13 mg.h-1.cm-2 (T test, n=6, p<0.05) indicating a dependence on carbonate. At a pH of 6.5 the skeleton lost weight at a rate of 1.8 mg.h-1.cm-2. The relationship between net calcification and pH (n=2) indicates that wt gain turns to loss at pH 7.4. These experiments confirm that calcification is a two-step process, involving secretion of a layer of organic matrix incorporating carbonic anhydrase to produce an active calcifying surface which uses carbon dioxide rather than carbonate. It is also unlikely that the calcifying surface is in direct contact with seawater. Inorganic deposition or dissolution of the skeleton in exposed dead areas of coral is a different phenomenon and is carbonate related. The wide range in results from this and other studies of calcification rate and carbon dioxide may be explainable in terms of the ratio of “live” to “dead” areas of coral
    corecore