47 research outputs found

    SIRT6 Is Required for Normal Retinal Function

    Get PDF
    The retina is one of the major energy consuming tissues within the body. In this context, synaptic transmission between light-excited rod and cone photoreceptors and downstream ON-bipolar neurons is a highly demanding energy consuming process. Sirtuin 6 (SIRT6), a NAD-dependent deacylase, plays a key role in regulating glucose metabolism. In this study, we demonstrate that SIRT6 is highly expressed in the retina, controlling levels of histone H3K9 and H3K56 acetylation. Notably, despite apparent normal histology, SIRT6 deficiency caused major retinal transmission defects concomitant to changes in expression of glycolytic genes and glutamate receptors, as well as elevated levels of apoptosis in inner retina cells. Our results identify SIRT6 as a critical modulator of retinal function, likely through its effects on chromatin

    Therapeutic Benefit of Radial Optic Neurotomy in a Rat Model of Glaucoma

    Get PDF
    Radial optic neurotomy (RON) has been proposed as a surgical treatment to alleviate the neurovascular compression and to improve the venous outflow in patients with central retinal vein occlusion. Glaucoma is characterized by specific visual field defects due to the loss of retinal ganglion cells and damage to the optic nerve head (ONH). One of the clinical hallmarks of glaucomatous neuropathy is the excavation of the ONH. The aim of this work was to analyze the effect of RON in an experimental model of glaucoma in rats induced by intracameral injections of chondroitin sulfate (CS). For this purpose, Wistar rats were bilaterally injected with vehicle or CS in the eye anterior chamber, once a week, for 10 weeks. At 3 or 6 weeks of a treatment with vehicle or CS, RON was performed by a single incision in the edge of the neuro-retinal ring at the nasal hemisphere of the optic disk in one eye, while the contralateral eye was submitted to a sham procedure. Electroretinograms (ERGs) were registered under scotopic conditions and visual evoked potentials (VEPs) were registered with skull-implanted electrodes. Retinal and optic nerve morphology was examined by optical microscopy. RON did not affect the ocular hypertension induced by CS. In eyes injected with CS, a significant decrease of retinal (ERG a- and b-wave amplitude) and visual pathway (VEP N2-P2 component amplitude) function was observed, whereas RON reduced these functional alterations in hypertensive eyes. Moreover, a significant loss of cells in the ganglion cell layer, and Thy-1-, NeuN- and Brn3a- positive cells was observed in eyes injected with CS, whereas RON significantly preserved these parameters. In addition, RON preserved the optic nerve structure in eyes with chronic ocular hypertension. These results indicate that RON reduces functional and histological alterations induced by experimental chronic ocular hypertension

    Ischemic Tolerance Protects the Rat Retina from Glaucomatous Damage

    Get PDF
    Glaucoma is a leading cause of acquired blindness which may involve an ischemic-like insult to retinal ganglion cells and optic nerve head. We investigated the effect of a weekly application of brief ischemia pulses (ischemic conditioning) on the rat retinal damage induced by experimental glaucoma. Glaucoma was induced by weekly injections of chondroitin sulfate (CS) in the rat eye anterior chamber. Retinal ischemia was induced by increasing intraocular pressure to 120 mmHg for 5 min; this maneuver started after 6 weekly injections of vehicle or CS and was weekly repeated in one eye, while the contralateral eye was submitted to a sham procedure. Glaucoma was evaluated in terms of: i) intraocular pressure (IOP), ii) retinal function (electroretinogram (ERG)), iii) visual pathway function (visual evoked potentials, (VEPs)) iv) histology of the retina and optic nerve head. Retinal thiobarbituric acid substances levels were assessed as an index of lipid peroxidation. Ischemic conditioning significantly preserved ERG, VEPs, as well as retinal and optic nerve head structure from glaucomatous damage, without changes in IOP. Moreover, ischemia pulses abrogated the increase in lipid peroxidation induced by experimental glaucoma. These results indicate that induction of ischemic tolerance could constitute a fertile avenue for the development of new therapeutic strategies in glaucoma treatment

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Experimental optic neuritis induced by the microinjection of lipopolysaccharide into the optic nerve

    Get PDF
    Optic neuritis (ON) is a condition involving primary inflammation, demyelination, and axonal injury in the optic nerve which leads to retinal ganglion cell (RGC) loss, and visual dysfunction. We investigated the ability of a single microinjection of bacterial lipopolysaccharide (LPS) directly into the optic nerve to induce functional and structural alterations compatible with ON. For this purpose, optic nerves from male Wistar rats remained intact or were injected with vehicle or LPS. The effect of LPS was evaluated at several time points post-injection in terms of: i) visual pathway and retinal function (visual evoked potentials (VEPs) and electroretinograms, (ERGs), respectively), ii) anterograde transport from the retina to its projection areas, iii) consensual pupil light reflex (PLR), iv) optic nerve histology, v) microglia/macrophage reactivity (by Iba-1- and ED1-immunostaining), vi) astrocyte reactivity (by glial fibrillary acid protein-immunostaining), vii) axon number (by toluidine blue staining), vii) demyelination (by myelin basic protein immunoreactivity and luxol fast blue staining), viii) optic nerve ultrastructure, and ix) RGC number (by Brn3a immunoreactivity). LPS induced a significant and persistent decrease in VEP amplitude and PLR, without changes in the ERG. In addition, LPS induced a deficit in anterograde transport, and an early inflammatory response consisting in an increased cellularity, and Iba-1 and ED1-immunoreactivity in the optic nerve, which were followed by changes in axonal density, astrocytosis, demyelination, and axon and RGC loss. These results suggest that the microinjection of LPS into the optic nerve may serve as a new experimental model of primary ON.Fil: Aranda, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Laboratorio de Neuroquímica Retiniana y Oftalmología Experimental; ArgentinaFil: Sande, Pablo H.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Laboratorio de Neuroquímica Retiniana y Oftalmología Experimental; ArgentinaFil: Dorfman, Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Laboratorio de Neuroquímica Retiniana y Oftalmología Experimental; ArgentinaFil: Rosenstein, Ruth Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Laboratorio de Neuroquímica Retiniana y Oftalmología Experimental; Argentin

    Flash VEPs in eyes injected with vehicle or CS with or without RON.

    No full text
    <p>Animals were weekly injected with vehicle or CS for 10 weeks and submitted to a sham operation or RON at 3 (upper panel) or 6 (lower panel) weeks of intracameral injections. A significant reduction in flash VEP N2-P2 amplitude component was observed in eyes injected with CS with a sham procedure. RON significantly abrogated the effect of ocular hypertension. No changes between vehicle- injected eyes with or without RON were observed. Representative VEPs traces are shown on the right side. Data are mean ± SEM (n = 10 eyes per group). **p<0.01 versus vehicle-injected eyes without RON (sham), b: p<0.01 versus CS-injected eyes with sham procedure (sham), by Tukey's test.</p

    Retinal histology examination after 10 weeks of ocular hypertension.

    No full text
    <p>A–E: Representative photomicrographs of retinal sections stained with hematoxylin and eosin from a vehicle-injected sham operated eye at 3 weeks of intracameral treatment (A), a vehicle-injected eye submitted to RON at 3 weeks of intracameral treatment (B) and a hypertensive eye without (C) or with RON performed at 3 (D) or 6 (E) weeks of treatment with CS. Note the diminution of GCL cells in the eye injected with CS without RON. RON preserved this parameter. The other retinal layers showed a normal appearance in all groups. Immunohistochemical detection of Thy-1 (F–J), Brn3a (K–O) or NeuN (P–T)-positive cells in the GCL from a vehicle-injected eye submitted to a sham procedure or RON, a hypertensive eye without or with RON performed at 3 or 6 weeks of treatment. The presences of all these markers were confined to the GCL in all experimental groups. A decrease in GCL cell number was observed in CS- injected eyes with sham procedure as compared with vehicle-injected eyes (sham or RON), whereas RON, which showed no effect in vehicle-injected eyes, preserved GCL cell count in CS-injected eyes. No differences were observed between CS-injected eyes submitted to a sham operation at 3 and 6 weeks of treatment (not shown). Scale bar: 100 µm. A representative (out of five per group) photograph of retina is shown. GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer.</p

    ON from a vehicle- or a CS-treated eye with or without RON.

    No full text
    <p>(A) Healthy, intact control optic nerve. Note the homogeneity of the staining. In vehicle-injected eyes, individual axons were generally uniform in shape, rounded and packed together tightly to form the fibers of the healthy nerve. In CS-treated eye with sham procedure (B) a less stained area indicates a nerve alteration. Disease in individual axons was characterized by axonal distention and distortion that resulted in a departure from the circular morphology of normal axons. In contrast, a conserved structure of the ON was observed in the CS-treated eye with RON at 3 (C), or 6 weeks (D) of ocular hypertension. Toluidine blue. Number of axons in eyes injected with vehicle or CS with sham procedure or RON at 3 (E) or 6 (F) weeks of treatment. A significant decrease in the axon number was observed in CS- injected eyes without RON as compared with vehicle-injected eyes (sham), whereas RON significantly preserved this parameter. Scale bar: 10 µm. Data are mean ± SEM (n = 5 eyes/group). **p<0.01 versus vehicle injected eyes with sham procedure (sham), a: p<0.05 versus CS-injected eyes without RON, by Tukey's test.</p

    IOP in eyes injected with vehicle or CS with or without RON.

    No full text
    <p>TonoPen measurements of IOP from eyes bilaterally injected with vehicle or CS and submitted to a sham procedure or RON performed at 3 (left panel) or 6 (right panel) weeks of treatment with vehicle or CS. At all time points examined, CS significantly increased IOP as compared with vehicle-injected eyes. RON did not modify this parameter in vehicle or CS-injected eyes at any time point. Data are the mean ± SEM (n = 10 eyes per group). **p<0.01 versus vehicle-injected eyes with sham procedure, by Tukey's test.</p
    corecore