51 research outputs found
Combining SiRPα decoy-coengineered T cells and antibodies augments macrophage-mediated phagocytosis of tumor cells.
The adoptive transfer of T cell receptor-engineered (TCR-engineered) T cells (ACT) targeting the HLA-A2-restricted cancer-testis epitope NY-ESO-1157-165 (A2/NY) has yielded favorable clinical responses against several cancers. Two approaches to improve ACT are TCR affinity optimization and T cell coengineering to express immunomodulatory molecules that can exploit endogenous immunity. By computational design we previously developed a panel of binding-enhanced A2/NY-TCRs including A97L, which augmented the in vitro function of gene-modified T cells as compared with WT. Here, we demonstrated higher persistence and improved tumor control by A97L-T cells. In order to harness macrophages in tumors, we further coengineered A97L-T cells to secrete a high-affinity signal regulatory protein α (SiRPα) decoy (CV1) that blocks CD47. While CV1-Fc-coengineered A97L-T cells mediated significantly better control of tumor outgrowth and survival in Winn assays, in subcutaneous xenograft models the T cells, coated by CV1-Fc, were depleted. Importantly, there was no phagocytosis of CV1 monomer-coengineered T cells by human macrophages. Moreover, avelumab and cetuximab enhanced macrophage-mediated phagocytosis of tumor cells in vitro in the presence of CV1 and improved tumor control upon coadministration with A97L-T cells. Taken together, our study indicates important clinical promise for harnessing macrophages by combining CV1-coengineered TCR-T cells with targeted antibodies to direct phagocytosis against tumor cells
Quantum gate algorithm for reference-guided DNA sequence alignment
Reference-guided DNA sequencing and alignment is an important process in
computational molecular biology. The amount of DNA data grows very fast, and
many new genomes are waiting to be sequenced while millions of private genomes
need to be re-sequenced. Each human genome has 3.2 B base pairs, and each one
could be stored with 2 bits of information, so one human genome would take 6.4
B bits or about 760 MB of storage (National Institute of General Medical
Sciences). Today most powerful tensor processing units cannot handle the volume
of DNA data necessitating a major leap in computing power. It is, therefore,
important to investigate the usefulness of quantum computers in genomic data
analysis, especially in DNA sequence alignment. Quantum computers are expected
to be involved in DNA sequencing, initially as parts of classical systems,
acting as quantum accelerators. The number of available qubits is increasing
annually, and future quantum computers could conduct DNA sequencing, taking the
place of classical computing systems. We present a novel quantum algorithm for
reference-guided DNA sequence alignment modeled with gate-based quantum
computing. The algorithm is scalable, can be integrated into existing classical
DNA sequencing systems and is intentionally structured to limit computational
errors. The quantum algorithm has been tested using the quantum processing
units and simulators provided by IBM Quantum, and its correctness has been
confirmed.Comment: 19 pages, 13 figure
A 96-well DNase I footprinting screen for drug–DNA interactions
The established protocol for DNase I footprinting has been modified to allow multiple parallel reactions to be rapidly performed in 96-well microtitre plates. By scrutinizing every aspect of the traditional method and making appropriate modifications it has been possible to considerably reduce the time, risk of sample loss and complexity of footprinting, whilst dramatically increasing the yield of data (30-fold). A semi-automated analysis system has also been developed to present footprinting data as an estimate of the binding affinity of each tested compound to any base pair in the assessed DNA sequence, giving an intuitive ‘one compound–one line’ scheme. Here, we demonstrate the screening capabilities of the 96-well assay and the subsequent data analysis using a series of six pyrrolobenzodiazepine-polypyrrole compounds and human Topoisomerase II alpha promoter DNA. The dramatic increase in throughput, quantified data and decreased handling time allow, for the first time, DNase I footprinting to be used as a screening tool to assess DNA-binding agents
Functional Conservation of Cis-Regulatory Elements of Heat-Shock Genes over Long Evolutionary Distances
Transcriptional control of gene regulation is an intricate process that requires precise orchestration of a number of molecular components. Studying its evolution can serve as a useful model for understanding how complex molecular machines evolve. One way to investigate evolution of transcriptional regulation is to test the functions of cis-elements from one species in a distant relative. Previous results suggested that few, if any, tissue-specific promoters from Drosophila are faithfully expressed in C. elegans. Here we show that, in contrast, promoters of fly and human heat-shock genes are upregulated in C. elegans upon exposure to heat. Inducibility under conditions of heat shock may represent a relatively simple “on-off” response, whereas complex expression patterns require integration of multiple signals. Our results suggest that simpler aspects of regulatory logic may be retained over longer periods of evolutionary time, while more complex ones may be diverging more rapidly
Histone H1 Subtypes Differentially Modulate Chromatin Condensation without Preventing ATP-Dependent Remodeling by SWI/SNF or NURF
Although ubiquitously present in chromatin, the function of the linker histone subtypes is partly unknown and contradictory studies on their properties have been published. To explore whether the various H1 subtypes have a differential role in the organization and dynamics of chromatin we have incorporated all of the somatic human H1 subtypes into minichromosomes and compared their influence on nucleosome spacing, chromatin compaction and ATP-dependent remodeling. H1 subtypes exhibit different affinities for chromatin and different abilities to promote chromatin condensation, as studied with the Atomic Force Microscope. According to this criterion, H1 subtypes can be classified as weak condensers (H1.1 and H1.2), intermediate condensers (H1.3) and strong condensers (H1.0, H1.4, H1.5 and H1x). The variable C-terminal domain is required for nucleosome spacing by H1.4 and is likely responsible for the chromatin condensation properties of the various subtypes, as shown using chimeras between H1.4 and H1.2. In contrast to previous reports with isolated nucleosomes or linear nucleosomal arrays, linker histones at a ratio of one per nucleosome do not preclude remodeling of minichromosomes by yeast SWI/SNF or Drosophila NURF. We hypothesize that the linker histone subtypes are differential organizers of chromatin, rather than general repressors
Solid phase DNase I footprinting: quick and versatile.
DNase I focxprinling is often the method cf choke 10 characterise the targets cf sequence-specific DNA binding prtMeins (1). DNase I f()()(prinling is labor intensive and the time required 10 prepare sampIes for gel electrophoresis is in the order cf 3 hours (2). Here we describe an adaptation cf the standard procedure 10 solid phase technology with many unique advantages over conventional footprinl ing assays. Immobilisation of the target DNA 0010 paramagnetic beads allows the quick and effiden! purification cf nicked fragments prior 10 elearophoresis. Since organie extractions as weil as precipitations are avoided, leo sampIes can be processed in about 30 miomes slaning from the DNase I digestion of pfOlein- DNA complexes 10 the loading of the gel. The separation of the recovered DNA fragments on sequencing gels is optimal since impurities that affect the single nucleotide resolution of DNA adversely are efficiently removed. DNA fragments containing the putative protein binding site with one biotinylated and one radioactively labelled end are prepared according to standard procedures. This is either achieved by PCR using one biotinylated primer and one oligonucleotide kinased with-y[32PjATP, or, if phosphawe activity is obvious in ehe protein sampie, by filling in the 5 ' overhangs of suitable restriction fragments with biotinylated and o:p2Pj-labelled dNTPs and Kleoow polymerase (2, 3). The labelIed, biotinylated fragments are immobilised on streptavidin-coated paramagnetic beads (Dynabeads M280-Streptavidin, DynaI, 0510) according to the manufacturer 's specifications (time required: 15-30 minutes). Concentrations of beads in the magnetic field are performed with a magnetic particle conceniralor (MPC, Dynal, Oslo) which takes about 30-60 seconds. Unincorporated radioactive primer or free nucleotides art quantitatively removed during subsequent washes of the DNA beads. As a result the amount of radioactivil) ' that is handled in all following steps is drastically reduced, minimizing the exposure of the researche
Shikonin-loaded antibody-armed nanoparticles for targeted therapy of ovarian cancer.
Conventional chemotherapy of ovarian cancer often fails because of initiation of drug resistance and/or side effects and trace of untouched remaining cancerous cells. This highlights an urgent need for advanced targeted therapies for effective remediation of the disease using a cytotoxic agent with immunomodulatory effects, such as shikonin (SHK). Based on preliminary experiments, we found SHK to be profoundly toxic in ovarian epithelial cancer cells (OVCAR-5 and ID8 cells) as well as in normal ovarian IOSE-398 cells, endothelial MS1 cells, and lymphocytes. To limit its cytotoxic impact solely to tumor cells within the tumor microenvironment (TME), we aimed to engineer SHK as polymeric nanoparticles (NPs) with targeting moiety toward tumor microvasculature. To this end, using single/double emulsion solvent evaporation/diffusion technique with sonication, we formulated biodegradable NPs of poly(lactic-co-glycolic acid) (PLGA) loaded with SHK. The surface of NPs was further decorated with solubilizing agent polyethylene glycol (PEG) and tumor endothelial marker 1 (TEM1)/endosialin-targeting antibody (Ab) through carbodiimide/N-hydroxysuccinimide chemistry. Having characterized the physicochemical and morphological properties of NPs, we studied their drug-release profiles using various kinetic models. The biological impact of NPs was also evaluated in tumor-associated endothelial MS1 cells, primary lymphocytes, and epithelial ovarian cancer OVCAR-5 cells. Based on particle size analysis and electron microscopy, the engineered NPs showed a smooth spherical shape with size range of 120 to 250 nm and zeta potential value of -30 to -40 mV. Drug entrapment efficiency was ~80%-90%, which was reduced to ~50%-60% upon surface decoration with PEG and Ab. The liberation of SHK from NPs showed a sustained-release profile that was best fitted with Wagner log-probability model. Fluorescence microscopy and flow cytometry analysis showed active interaction of Ab-armed NPs with TEM1-positive MS1 cells, but not with TEM1-negative MS1 cells. While exposure of the PEGylated NPs for 2 hours was not toxic to lymphocytes, long-term exposure of the Ab-armed and PEGylated NPs was significantly toxic to TEM1-positive MS1 cells and OVCAR-5 cells. Based on these findings, we propose SHK-loaded Ab-armed PEGylated PLGA NPs as a novel nanomedicine for targeted therapy of solid tumors
- …