26 research outputs found

    Growth pattern of the middle ear in the gray short-tailed opossum, Monodelphis domestica

    Get PDF
    We studied the mass growth trajectories of middle ear ossicles and tympanic membrane and oval window area in 19 specimens of postnatal ages 30???180 days of the gray short-tailed opossum Monodelphis domestica. We weighed the skull mass and the mass of the three middle ear ossicles with appropriate balances. Using a binocular microscope provided with a grid, we measured the length of malleus and incus, as well as the longest axis and the one perpendicular to it on both the tympanic membrane and the stapes footplate. The size variation was studied with least squares regression analyses between various measurements. The incus and stapes change little in mass after 40 days of postnatal life, while the malleus does, reaching maximum mass at around 100 PND (postnatal days). This modularity in growth trajectory is in contrast with the shared evolutionary origin of malleus and incus from branchial arch 1. The maturation of the middle ??? and as indicated by previous work, that of the inner ear ??? is coupled with the improvement of hearing sensitivity at low and high frequencies after the initial onset of hearing at 29 PND.Peer reviewe

    Biological and cultural history of domesticated dogs in the Americas

    Full text link
    FIG. 1. — "Canis mexicana", a domestic dog with peculiar humps and apparent muscle hypertrophy, as depicted in 1651 by Hernández in his Rerum medicarum Novae Hispaniae thesaurus (Hernández 1992). Previously dismissed as a caricature (Ueck 1961), it may actually illustrate a phenotype associated with mutations in the myostatin gene. Picture retrieved from Internet Archive https://archive.org/details/rerummedicarumno00hern/page/466/mode/1up, last consultation on 30 November 2021.Published as part of Segura, Valentina, Geiger, Madeleine, Monson, Tesla A., Flores, David & Sánchez-Villagra, Marcelo R., 2022, Biological and cultural history of domesticated dogs in the Americas, pp. 1-18 in Anthropozoologica 57 (1) on page 4, DOI: 10.5252/anthropozoologica2022v57a1, http://zenodo.org/record/589748

    Extreme lower jaw elongation in a placoderm reflects high disparity and modularity in early vertebrate evolution

    Get PDF
    Jaws are a key vertebrate feature that arose early in our evolution. Placoderms are among the first jawed vertebrates; their fossils yield essential knowledge about the early diversification of gnathostome feeding strategies, diets and modularity. Modularity can be expressed through disproportional lengths of lower and upper jaws as in swordfish or halfbeaks. Alienacanthus malkowskii is an arthrodire from the Famennian of Morocco and Poland, whose most remarkable feature is its lower jaw, which is twice as long as the skull. This is the oldest record of such extreme jaw elongation and modularity in vertebrates. The gnathal plates of Alienacanthus possess sharp, posteriorly recurved teeth that continue anterior of the occlusion in the inferognathals. The dentition suggests a catching and trapping live prey function, and the jaw occlusion is unique among placoderms. This armoured ‘fish’ expands the morphological and ecological diversity during one of the first radiations of jawed vertebrates with a combination of features so far unrecorded for arthrodires

    Skeletal variation in bird domestication: limb proportions and sternum in chicken, with comparisons to mallard ducks and Muscovy ducks.

    Get PDF
    Background Domestication, including selective breeding, can lead to morphological changes of biomechanical relevance. In birds, limb proportions and sternum characteristics are of great importance and have been studied in the past for their relation with flight, terrestrial locomotion and animal welfare. In this work we studied the effects of domestication and breed formation in limb proportions and sternum characteristics in chicken (Gallus gallus), mallard ducks (Anas plathyrhynchos) and Muscovy ducks (Cairina moschata). Methods First, we quantified the proportional length of three long bones of the forelimb (humerus, radius, and carpometacarpus) and the hind limb (femur, tibiotarsus, and tarsometatarsus) in domestic chickens, mallard ducks, and Muscovy ducks and their wild counterparts. For this, we took linear measurements of these bones and compared their proportions in the wild vs. the domestic group in each species. In chicken, these comparisons could also be conducted among different breeds. We then evaluated the proportional differences in the context of static and ontogenetic allometry. Further, we compared discrete sternum characteristics in red jungle fowl and chicken breeds. In total, we examined limb bones of 287 specimens and keel bones of 63 specimens. Results We found a lack of significant change in the proportions of limb bones of chicken and Muscovy duck due to domestication, but significant differences in the case of mallard ducks. Variation of evolvability, allometric scaling, and heterochrony may serve to describe some of the patterns of change we report. Flight capacity loss in mallard ducks resulting from domestication may have a relation with the difference in limb proportions. The lack of variation in proportions that could distinguish domestic from wild forms of chicken and Muscovy ducks may reflect no selection for flight capacity during the domestication process in these groups. In chicken, some of the differences identified in the traits discussed are breed-dependent. The study of the sternum revealed that the condition of crooked keel was not unique to domestic chicken, that some sternal characteristics were more frequent in certain chicken breeds than in others, and that overall there were no keel characteristics that are unique for certain chicken breeds. Despite some similar morphological changes identified across species, this study highlights the lack of universal patterns in domestication and breed formation

    Shark and ray diversity in the Tropical America (Neotropics)—an examination of environmental and historical factors affecting diversity

    Get PDF
    We present the first comprehensive review of the present and past shark and ray diversity in marine waters of Tropical America, examining the patterns of distribution in the Eastern Central Pacific (EP) and Western Central Atlantic (WA) realms. We identified the major regions of diversity and of endemism, and explored the relations to physical variables. We found a strong relationship between shark and ray diversity with area and coastal length of each province. The Tropical Northwestern Atlantic Province is characterized by high diversity and greater occurrence of endemic species, suggesting this province as the hotspot of sharks and rays in Tropical America. The historical background for the current biogeography is explored and analyzed. Referential data from 67 geological units in 17 countries, from both shallow and deep-water habitats, across five time-clusters from the Miocene to the Pleistocene were studied. New data include 20 new assemblages from six countries. The most diverse Neogene and extant groups of shark and ray are Carcharhiniformes and Myliobatiformes, respectively. The differentiation between Pacific and Atlantic faunas goes to at least the middle Miocene, probably related with the increasing closure of the Central American Seaway acting as a barrier. The highest faunal similarity between the assemblages from the EP and the WA at the early Miocene could be related to the lack of a barrier back then, but increased sampling is needed to substantiate this hypothesis

    Skeletal variation in bird domestication: limb proportions and sternum in chicken, with comparisons to mallard ducks and Muscovy ducks

    Full text link
    Background Domestication, including selective breeding, can lead to morphological changes of biomechanical relevance. In birds, limb proportions and sternum characteristics are of great importance and have been studied in the past for their relation with flight, terrestrial locomotion and animal welfare. In this work we studied the effects of domestication and breed formation in limb proportions and sternum characteristics in chicken (Gallus gallus), mallard ducks (Anas plathyrhynchos) and Muscovy ducks (Cairina moschata). Methods First, we quantified the proportional length of three long bones of the forelimb (humerus, radius, and carpometacarpus) and the hind limb (femur, tibiotarsus, and tarsometatarsus) in domestic chickens, mallard ducks, and Muscovy ducks and their wild counterparts. For this, we took linear measurements of these bones and compared their proportions in the wild vs. the domestic group in each species. In chicken, these comparisons could also be conducted among different breeds. We then evaluated the proportional differences in the context of static and ontogenetic allometry. Further, we compared discrete sternum characteristics in red jungle fowl and chicken breeds. In total, we examined limb bones of 287 specimens and keel bones of 63 specimens. Results We found a lack of significant change in the proportions of limb bones of chicken and Muscovy duck due to domestication, but significant differences in the case of mallard ducks. Variation of evolvability, allometric scaling, and heterochrony may serve to describe some of the patterns of change we report. Flight capacity loss in mallard ducks resulting from domestication may have a relation with the difference in limb proportions. The lack of variation in proportions that could distinguish domestic from wild forms of chicken and Muscovy ducks may reflect no selection for flight capacity during the domestication process in these groups. In chicken, some of the differences identified in the traits discussed are breed-dependent. The study of the sternum revealed that the condition of crooked keel was not unique to domestic chicken, that some sternal characteristics were more frequent in certain chicken breeds than in others, and that overall there were no keel characteristics that are unique for certain chicken breeds. Despite some similar morphological changes identified across species, this study highlights the lack of universal patterns in domestication and breed formation

    On Roth’s “human fossil” from Baradero, Buenos Aires Province, Argentina: morphological and genetic analysis

    Full text link
    The “human fossil” from Baradero, Buenos Aires Province, Argentina, is a collection of skeleton parts first recovered by the paleontologist Santiago Roth and further studied by the anthropologist Rudolf Martin. By the end of the nineteenth century and beginning of the twentieth century it was considered one of the oldest human skeletons from South America's southern cone. Here, we present the results of an interdisciplinary approach to study and contextualize the ancient individual remains. We discuss the context of the finding by first compiling the available evidence associated with the historical information and any previous scientific publications on this individual. Then, we conducted an osteobiographical assessment, by which we evaluated the sex, age, and overall preservation of the skeleton based on morphological features. To obtain a 3D virtual reconstruction of the skull, we performed high resolution CT-scans on selected skull fragments and the mandible. This was followed by the extraction of bone tissue and tooth samples for radiocarbon and genetic analyses, which brought only limited results due to poor preservation and possible contamination. We estimate that the individual from Baradero is a middle-aged adult male. We conclude that the revision of foundational collections with current methodological tools brings new insights and clarifies long held assumptions on the significance of samples that were recovered when archaeology was not yet professionalized

    Why the long face? Comparative shape analysis of miniature, pony, and other horse skulls reveals changes in ontogenetic growth

    Full text link
    Background Much of the shape variation found in animals is based on allometry and heterochrony. Horses represent an excellent model to investigate patterns of size-shape variation among breeds that were intentionally bred for extreme small and large sizes. Methods We tested whether ponies (wither height 148 cm, here-after called horses) during ontogenetic growth. We used a dataset of 194 specimens from 25 horse and 13 pony breeds, two of which are miniature breeds (wither height < 96.5 cm)—Falabella, Shetland. We applied three-dimensional geometric morphometrics, linear measurements, and multivariate analyses (Procrustes ANOVAs) to quantitatively examine and compare the ontogenetic trajectories between pony and horse breeds with an emphasis on the miniature breeds as an extreme case of artificial selection on size. Additionally, we tested for juvenile characteristics in adult horse and miniature breeds that could resemble “paedomorphosis”—retention of juvenile characteristics in adult stage; e.g. large eyes, large braincase-to-face-relationship, and large head-to-body relationship. Results Allometric regression of size on shape revealed that 42% of shape variation could be explained by variation in size in all breeds. The ontogenetic trajectories of ponies and horses vary in slope and therefore in rate of change per unit size, and length. The differences in trajectory lengths and slopes result in ponies having a similar skull shape in an older age stage than horses of the same size in a younger age stage. This pattern could cause the generally perceived “paedomorphic” appearance of ponies. Miniature breeds have larger heads in relation to wither height compared to horses, a non-paedomorphic feature in horses specifically. Also, rostra (faces) are longer in adult individuals than in juveniles across all kinds of breeds. This pattern can be explained by the long-face hypothesis for grazing ungulates and could possibly be caused by the mismatch of selection by humans for shorter rostra and the dentition of ruminants. Conclusions Miniature breed specimens do not exhibit any of the classical mammalian “paedomorphic” features (large orbits, large heads), except for the adult Falabella that has enlarged orbits, possibly because they are herbivorous ungulates that are affected by functional and metabolic constraints related to low nutrient-food consumption. Instead ponies, including miniature breeds, have faster and shorter ontogenetic growth compared to horses, resulting in adult pony skulls looking in part like juvenile horse skulls

    An irregular hourglass pattern describes the tempo of phenotypic development in placental mammal evolution

    Full text link
    Organismal development is defined by progressive transformations that ultimately give rise to distinct tissues and organs. Thus, temporal shifts in ontogeny often reflect key phenotypic differences in phylogeny. Classical theory predicts that interspecific morphological divergence originates towards the end of embryonic or fetal life stages, i.e. the early conservation model. By contrast, the hourglass model predicts interspecific variation early and late in prenatal ontogeny, though with a phylogenetically similar mid-developmental period. This phylotypic period, however, remains challenging to define within large clades such as mammals. Thus, molecular and morphological tests on a mammalian hourglass have not been entirely congruent. Here, we report an hourglass-like pattern for mammalian developmental evolution. By comparing published data on the timing of 74 homologous characters across 51 placental species, we demonstrated that variation in the timing of development decreased late in embryogenesis––when organ formation is highly active. Evolutionary rates of characters related to this timeframe were lowest, coinciding with a phylotypic period that persisted well beyond the pharyngula ‘stage’. The trajectory culminated with elevated variation in a handful of fetal and perinatal characters, yielding an irregular hourglass pattern. Our study invites further quantification of ontogeny across diverse amniotes and thus challenges current ideas on the universality of developmental patterns

    Data from: Heterochrony, dental ontogenetic diversity and the circumvention of constraints in marsupial mammals and extinct relatives

    No full text
    In marsupial mammals and their extinct relatives -collectively, metatherians- only the last premolar is replaced, but the timing of dental eruption is variable within the group. Our knowledge of fossils metatherians is limited, but is critical to understanding several aspects of the evolution and morphological diversification of this clade. We analyzed the sequence of eruption of 76 specimens of metatherians, including Sparassodonta, an extinct clade of specialized carnivores from South America. In Sparassodonta (1) the P3/p3 erupt simultaneously, in common with some didelphids (in other didelphids, p3 erupts before P3, whereas in the remaining didelphids, some peramelids, one caenolestid, and Pucadelphys this order is reversed); (2) the upper and lower molars at the same locus erupt more in synchrony than in other carnivorous metatherians in which the lower molars clearly precede the upper equivalents; (3) the upper canine in thylacosmilids and proborhyaenids is hypselodont; (4) species with similar molar morphologies have different morphologies of the deciduous premolars, suggesting diverse diets among the juveniles of different taxa; (5) deciduous teeth are functional for a long period of time, with thylacosmilids even retaining a functional DP3 in the permanent dentition. The retention of the DP3 and the hypertrophied and hypselodont upper canine of thylacosmilids represent clear heterochronic shifts. Specializations in the timing of dental eruption and in the deciduous tooth shape of sparassodonts are evolutionary mechanisms that circumvent constraints imposed by the metatherian replacement pattern and increase morphological disparity during ontogeny
    corecore