3,239 research outputs found

    Unseen the other in post-urban utopia. Sensitive bodies II

    Get PDF
    Modern architecture has resulted an utopia not only possible but, in practice, effective. Post-urban utopia has actually been built along the twentieth century throughout a complex network of operations, including both be- havioral orientation and systemic simplification. All these operations have acted specifically on the human bod- ies, bodies in movement, bodies that inter-act, bodies that observe (see) and are observed (seen), in a seminal cybernetic operation of construction of the urban system. The recent urban utopia is sustained, however, in a progressive unseen of the other, replacing the ideals of transparency of the original modern architecture with a practical communicative opacity. We have developed the concept of sensitive body as a method of research, knowledge, recognition and representation of urban events and processes, even hidden or veiled. Our hypothesis is that by using bodies trained in the representation of emotions, experiences carried out in performative arts, performance or street performance, it is possible to unveil hidden information or just make visible the system of social relations that takes place in the public space

    Child Head Circumference and Placental MFSD2a Expression Are Associated to the Level of MFSD2a in Maternal Blood During Pregnancy

    Get PDF
    Gestational diabetes mellitus (GDM) is a world-wide health challenge, which prevalence is expected to increase in parallel to the epidemic of obesity. Children born from GDM mothers have lower levels of docosahexaenoic acid (DHA) in cord blood, which might influence their neurodevelopment. Recently, the membrane transporter Major Family Super Domain 2a (MFSD2a) was associated with the selective transportation of DHA as lysophospholipids. The expression of the DHA membrane transporter MFSD2a is lower in GDM placentas, which could affect materno-fetal DHA transport. Humans with homozygous inactivating mutations in the MFSD2a gene present severe microcephaly and intellectual impairments. Herein, we intended to identify early blood biomarkers that may be of use during pregnancy to monitor the offspring development and the adequate nutritional interventions, such as nutritional supplementation, that may be selected to improve it. We evaluated MFSD2a expression in maternal blood at the third trimester of pregnancy, and its potential relationship with the expression of placental MFSD2a at delivery and child outcomes. Three groups of pregnant women were recruited: 25 controls, 23 GDM with dietary treatment, and 20 GDM with insulin treatment. Maternal and neonatal anthropometric and biochemical parameters were evaluated. MFSD2a was analyzed in placenta, blood and serum. MFSD2a protein expression in maternal blood was significantly lower in GDM groups and correlated with placental MFSD2a and Z-score neonatal head circumference during the first 6 months of life. The cord/maternal serum ratio of DHA, a solid indicator of materno-fetal DHA transport, was reduced in GDM groups and correlated with MFSD2a in maternal blood at the third trimester and in placenta at delivery. This indicates that altered MFSD2a levels in maternal blood during pregnancy might influence placental nutrient transport and fetal neurodevelopment. Furthermore, MFSD2a levels in maternal blood on the third trimester were inversely correlated to DHA in maternal serum lyso-PL. Thus, the level of MFSD2a in maternal blood could be used as a potential biomarker for the early detection of disturbances of MFSD2a expression during pregnancy and the subsequent consequences for the neurodevelopment of the child, as well as it may help to choose the optimal treatment approach for the affected subjects

    Sensitivity of polyamine metabolism to glucose deprivation is increased in neuroblastoma cells with N-myc amplification

    Get PDF
    Ornithine-derived polyamines are essential for cell proliferation, and their levels are elevated in many human tumors. Neuroblastoma, the most frequent extra-cranial solid tumor in children, harbors amplification of n-myc oncogene (which enhances polyamine metabolism) in 25% of the cases. In the present communication, the relevance of n-myc amplification in several metabolic features of human neuroblastoma cell lines is studied. A previously unknown linkage between glycolysis impairment and polyamine reduction, related to n-myc amplification, is unveiled. Results show that glycolysis inhibition is able to trigger signaling events leading to the reduction of N-Myc protein levels and subsequent decrease of both ornithine decarboxylase expression and polyamine levels, accompanied by cell cycle blockade preceding cell death. Metabolism-targeted therapies are emerging as new approaches for cancer treatment. New anti-tumor strategies could take advantage of the direct relationship between glucose deprivation and PA metabolism impairment leading to cell death described in the present work, and its apparent dependence on n-myc amplification in the case of neuroblastoma. Combined therapies targeting glucose metabolism and polyamine synthesis could be effective in the treatment of n-myc amplified tumors.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This work has been funded by Grants SAF2011-26518 (Ministerio de Economía y Competitividad, Spain), Excellence Projects CTS-1507 and CVI-06585 (Junta de Andalucía, Spain) and BIO-267 (fondos PAIDI, Junta de Andalucía, Spain). MVRP was the recipient of a FPU long-term fellowship (Ministerio de Educación, Cultura y Deporte, Spain) and a “III Plan Propio de Investigación” short-term fellowship (University of Málaga). CIBERER is an initiative of Instituto de Salud Carlos III. This communication has the support of a travel grant "Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech"

    A role for antizyme inhibitor 2 in the biosynthesis and content of serotonin and histamine in mouse mast cells

    Get PDF
    Polyamines (putrescine, spermidine and spermine; PAs) are essential for the majority of living cells. Antizymes and antizyme inhibitors are key regulatory proteins of PA levels by affecting ornithine decarboxylase and PA uptake. In addition to PAs, mast cells (MC) synthesize and store in their granules histamine (Hia) and serotonin (5-HT), which are critical for their function. Our previous studies have indicated a metabolic interplay among PAs, Hia and 5-HT in this cell type. For instance, we showed that PAs affect Hia synthesis during early stages of IL-3-induced bone marrow cell differentiation into bone marrow derived MCs (BMMCs) and demonstrated that PAs are present in MC secretory granules and are important for granule homeostasis, including Hia storage and 5-HT levels. A few years ago, a novel antizyme inhibitor (AZIN2) was described whose expression is restricted to a few tissues and cell types including brain, testis and MCs. In MCs, it was recently proposed that AZIN2 could act as a local regulator of PA biosynthesis in association with 5-HT-containing granules and with 5-HT release following MC activation. To gain insight into the role of AZIN2 in the biosynthesis and storage of 5-HT and also Hia, we have generated BMMCs from both wild-type and transgenic mice with severe Azin2 hypomorphism, and have analyzed the content of PAs, 5-HT and Hia, and some elements of their metabolisms. Spermine and 5-HT levels were reduced in Azin2 hypomorphic BMMCs compared with wild-type controls, whereas the amount of Hia was increased. Accordingly, the level of tryptophan hydroxylase 1 (the key enzyme for 5-HT biosynthesis) was reduced and the amount of enzymatic activity of histidine decarboxylase (the enzyme responsible for Hia biosynthesis) was increased in Azin2 hypomorphic BMMCs. Taken together, our results show evidence that AZIN2 has an important role in the regulation of 5-HT and Hia biosynthesis and storage in MCsUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This work was supported by SAF2011-26518 (MINECO, Spain) and P10-CVI-6585 and Bio-267 (Junta de Andalucia, Spain). CIBERER is an iniciative of Instituto de Salud Carlos III (Spain)

    Structural and functional interaction between polyamine related molecules and biological membranes

    Get PDF
    La comunicación describe el conocimiento actual sobre las interacciones de biomoléculas relacionadas con el metabolismo de poliaminas con las estructuras y funciones de las membranas biológicasChanges induced by PA on nucleic acid (NA) conformation and synthesis is proven to be a major reason for PA essentiality (1-3). However, PA interactions with other polyanions, for instance polyanionic membrane lipid bilayers and glyosaminoglycans have received less attention (3-4). The functional importance of these interactions still is an obscure but interesting area of cell and molecular biology, especially in mammalian cells for which specific PA transport systems are not fully characterized (5). In mammals, activity and turnover of the polyamine (PA) synthesis key enzyme is controlled by a set of proteins: Antizymes (OAZ1-3) and antizyme inhibitors (AZIN1 and 2). It is demonstrated that AOZ modulate polyamine uptake (6), and that PA transport to mitochondria is linked to the respiratory chain state and modulates mitochondrial permeability transition (7). Antizyme expression variants have been located in mitochondria, being proposed as a proapoptotic factor (7-8). AZIN 2 is only expressed in a reduced set of tissues that includes mast cells, where it is associated to mast cell granules membrane (9). This fact, together to the abnormalities observed in bone marrow derived mast cell granules when they are differentiated under restricted PA synthesis conditions (10 and unpublished results), point out to important roles of PA and their related proteins in structure and function of mast cell granules. We will also present novel biophysical results on tripartite interactions of PA that remark the interest of the characterization of PA interactions with lipid bilayers for biomedicine and biotechnology. Thus, the information reported in this paper integrates previously reported information with our still unpublished results, all indicating that PA and their related proteins also are important factors for structure and dynamics of biological membranes and their associated functions essential in human physiology; for instance, solute interchange with the environment (uptake and secretion), oxidative metabolism and apoptosis. The importance of these involved processes for human homeostasis claim for further research efforts. 1. Ruiz-Chica J, Medina MA, Sánchez-Jiménez F and Ramírez FJ (2001) Fourier Transform Raman study of the structural specificities on the interaction between DNA and biogenic polyamines. Biophysical J. 80:443-454. 2. Lightfoot HL, Hall J (2014) Endogenous polyamine function--the RNA perspective. Nucleic Acids Res. 42:11275-11290. 3. Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol. 42:39-51. 4. Finger S, Schwieger C, Arouri A, Kerth A, Blume A (2014) Interaction of linear polyamines with negatively charged phospholipids: the effect of polyamine charge distance. Biol Chem. 395:769-778. 5. Poulin R, Casero RA, Soulet D. (2012) Recent advances in the molecular biology of metazoan polyamine transport. Amino Acids. 42:711-723. 6. Kahana C (2009) Regulation of cellular polyamine levels and cellular proliferation by antizyme and antizyme inhibitor. Essays Biochem. 4:47-61. 7. Agostinelli E, Marques MP, Calheiros R, Gil FP, Tempera G, Viceconte N, Battaglia V, Grancara S, Toninello A (2010) Polyamines: fundamental characters in chemistry and biology. Amino Acids 38:393-403. 8. Liu GY, Liao YF, Hsu PC, Chang WH, Hsieh MC, Lin CY, Hour TC, Kao MC, Tsay GJ, Hung HC (2006) Antizyme, a natural ornithine decarboxylase inhibitor, induces apoptosis of haematopoietic cells through mitochondrial membrane depolarization and caspases' cascade. Apoptosis 11:1773-1788. 9. Kanerva K, Lappalainen J, Mäkitie LT, Virolainen S, Kovanen PT, Andersson LC (2009). Expression of antizyme inhibitor 2 in mast cells and role of polyamines as selective regulators of serotonin secretion. PLoS One 31:e6858. 10. García-Faroldi G, Rodríguez CE, Urdiales JL, Pérez-Pomares JM, Dávila JC, Pejler G, Sánchez-Jiménez F, Fajardo I (2010) Polyamines are present in mast cell secretory granules and are important for granule homeostasis. PLoS One 30:e15071.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    A role for antizyme inhibitor 2 in the biosynthesis and content of histamine and serotonin in mouse mast cells

    Get PDF
    Polyamines (putrescine, spermidine and spermine; PAs) are required for the survival of the majority of living cells. Antizymes and antizyme inhibitors are key regulatory proteins of PA levels by affecting ornithine decarboxylase, the rate-limiting biosynthetic enzyme, and PA uptake. In addition to PA, mast cells (MC) synthesize and store in their granules the biogenically active amines histamine (Hia) and serotonin (5-HT), which are of critical importance for their function. Previously, we have performed several studies in this cell type regarding the interplay between the metabolisms of PAs and Hia and 5-HT. Our results showed that PAs affect Hia synthesis during early stages of IL-3-induced bone marrow cell differentiation into bone marrow derived MCs (BMMCs) and demonstrated that PAs are present in MC secretory granules and are important for granule homeostasis, including Hia storage and 5-HT levels. A few years ago, a novel antizyme inhibitor (AZIN2) was described. In contrast to AZIN1, AZIN2 expression is restricted to a few tissues and cell types including brain, testis and MCs. In MCs, it was recently described that AZIN2 could act as a local regulator of PA biosynthesis in association with the 5-HT granule content and release. At present, our aim is to gain further insight into the role of AZIN2 in the biosynthesis, storage and release of both Hia and 5-HT. In this study, we have generated BMMCs from both wild-type and transgenic mice with severe Azin2 hypomorphism, and have analyzed the content of PAs, Hia and 5-HT, and some elements of their metabolisms. Both PAs and 5-HT levels were reduced in Azin2 hypomorphic BMMCs compared with wild-type controls, whereas the amount of Hia was increased. Accordingly, the level of tryptophan hydroxylase 1 (the key enzyme for 5-HT biosynthesis) was reduced and the amount of enzymatic activity of histidine decarboxylase (the enzyme responsible for histamine biosynthesis) was increased in Azin2 hypomorphic BMMCs. Taken together, our results show evidence that AZIN2 has an important role in the regulation of Hia and 5-HT biosynthesis and storage in MCs. Department of Molecular Biology and Biochemistry, and CIBER de Enfermedades Raras (CIBER-ER), Faculty of Sciences, University of Málaga, Málaga 29071, Spain. Corresponding author: I. Fajardo ([email protected]) This work was supported by SAF2011-26518 (MINECO, Spain) and P10-CVI-6585 and Bio-267 (Junta de Andalucia, Spain). CIBERER is an iniciative of Instituto de Salud Carlos III (Spain).Universidad de Málaga. Campus de Excelencia Internacional Andalucía-Tech. SAF2011-26518 (MINECO, Spain) and P10-CVI-6585 and Bio-267 (Junta de Andalucia, Spain. CIBERER is an iniciative of Instituto de Salud Carlos III (Spain)

    Minimal Decision Rules Based on the A Priori Algorithm

    Full text link
    Based on rough set theory many algorithms for rules extraction from data have been proposed. Decision rules can be obtained directly from a database. Some condition values may be unnecessary in a decision rule produced directly from the database. Such values can then be eliminated to create a more comprehensi- ble (minimal) rule. Most of the algorithms that have been proposed to calculate minimal rules are based on rough set theory or machine learning. In our ap- proach, in a post-processing stage, we apply the Apriori algorithm to reduce the decision rules obtained through rough sets. The set of dependencies thus obtained will help us discover irrelevant attribute values

    The Impact of Plant-Based Dietary Patterns on Cancer-Related Outcomes: A Rapid Review and Meta-Analysis

    Get PDF
    The authors would like to acknowledge Dafina Petrova for her contributions in editing and proofreading the manuscript.Long-term cancer survivors represent a sizeable portion of the population. Plant-based foods may enhance the prevention of cancer-related outcomes in these patients. We aimed to synthesize the current evidence regarding the impact of plant-based dietary patterns (PBDPs) on cancer-related outcomes in the general population and in cancer survivors. Considered outcomes included overall cancer mortality, cancer-specific mortality, and cancer recurrence. A rapid review was conducted, whereby 2234 original articles related to the topic were identified via Pubmed/Medline. We selected 26 articles, which were classified into studies on PBDPs and cancer outcomes at pre-diagnosis: vegan/vegetarian diet (N = 5), provegetarian diet (N = 2), Mediterranean diet (N = 13), and studies considering the same at post-diagnosis (N = 6). Pooled estimates of the associations between the aforementioned PBDPs and the different cancer outcomes were obtained by applying random effects meta-analysis. The few studies available on the vegetarian diet failed to support its prevention potential against overall cancer mortality when compared with a non-vegetarian diet (e.g., pooled hazard ratio (HR) = 0.97; 95% confidence interval (CI): 0.88–1.06). The insufficient number of studies evaluating provegetarian index scores in relation to cancer mortality did not permit a comprehensive assessment of this association. The association between adherence to the Mediterranean diet and cancer mortality reached statistical significance (e.g., pooled HR = 0.84; 95% CI: 0.79–0.89). However, no study considered the influence of prognostic factors on the associations. In contrast, post-diagnostic studies accounted for prognostic factors when assessing the chemoprevention potential of PBDPs, but also were inconclusive due to the limited number of studies on well-defined plant-based diets. Thus, whether plant-based diets before or after a cancer diagnosis prevent negative cancer-related outcomes needs to be researched further, in order to define dietary guidelines for cancer survivors.CIBER Epidemiologia y Salud Publica CIBERES
    corecore