4,105 research outputs found

    Diagnostico Del Clima Laboral De La Empresa Aralmex Group Sac Periodo: 2016

    Get PDF
    (cristina, 2016) Este proyecto de investigación es un acercamiento a la problemática de los recursos humanos en la empresa Aralmex Group SAC, especialmente enfocada en el clima laboral. Por Clima laboral entendemos que va utilizar como elemento fundamental la percepción que el colaborador tiene de los procesos que ocurren en su medio laboral; lo cual va referir a una percepción o reacción común de individuos ante una situación.Trabajo de suficiencia profesiona

    Photoacoustic effect measurement in aqueous suspensions of gold nanorods caused by low-frequency and low-power near-infrared pulsing laser irradiation

    Get PDF
    When aqueous suspensions of gold nanorods are irradiated with a pulsing laser (808 nm), pressure waves appear even at low frequencies (pulse repetition rate of 25 kHz). We found that the pressure wave amplitude depends on the dynamics of the phenomenon. For fixed concentration and average laser current intensity, the amplitude of the pressure waves shows a trend of increasing with the pulse slope and the pulse maximum amplitude.We postulate that the detected ultrasonic pressure waves are a sort of shock waves that would be generated at the beginning of each pulse, because the pressure wave amplitude would be the result of the positive interference of all the individual shock waves

    La Evolución del Sector Agroforestal Vista a Través del Museo Rural Virtual de la UPM

    Full text link
    La sociedad española fue hasta hace pocas décadas una sociedad rural, con más de la mitad de su población viviendo en el medio rural y del medio rural. La rápida evolución social ha provocado que en un corto espacio de tiempo este tipo de vida haya pasado a ser histórico y, dada la importancia que tuvo, es imprescindible conservarlo. El Museo Rural Virtual de la UPM que se expone en el presente trabajo tiene como objetivo mostrar todos aquellos aspectos del mundo rural que hoy en día ya son historia y para ello emplea como instrumento la creación de una base de datos (página web) que contiene información gráfica y textual de diversos aspectos de las formas de vida y de trabajo en el medio rural. En él pueden consultarse elementos relativos a maquinaria agrícola, herramientas y aperos agrícolas, industrias agroalimentarias, maquinarias y elementos riego, arquitectura rural, unidades y útiles de medida, tractores, agrimensura y etnobotánica, así como una recopilación bibliográfica, videoteca y otros documentos y enlaces de interés en los que se ha incorporado información sobre diversos Museos Etnográficos y de Usos y Costumbres

    Elaboración de guías docentes atractivas: Formato Web

    Get PDF
    La Guía Docente supone una herramienta básica del Sistema Europeo de transferencia de créditos para alcanzar el objetivo de “promover la cooperación europea en garantía de calidad mediante el desarrollo de metodologías y criterios comparables” (Declaración de Bolonia). El profesorado responsable de las asignaturas debe diseñarlas como un instrumento al servicio del estudiante, a quien debe ofrecérsele la suficiente información para que conozca qué es lo que debe aprender, cómo se va a desarrollar el proceso de enseñanza‐aprendizaje y cómo va a ser evaluado. La información que se transmite al alumno debe ser clara y concisa. Por ese motivo el Grupo de Innovación Educativa “TIDAFIA” de la UPM está desarrollando guías docentes en formato web con el fin de conseguir estructuras precisas, atractivas y de fácil navegabilidad, más acorde con el objetivo de las Universidades Españolas de potenciar la incorporación de las Tecnologías de la Información y la Comunicación (TIC) en el Sistema Universitario Español (UNIVERSITIC 2008

    Combined application of polyacrylate scaffold and lipoic acid treatment promotes neural tissue reparation after brain injury

    Full text link
    [EN] Primary objective: The aim of this study was to investigate the reparative potential of a polymeric scaffold designed for brain tissue repair in combination with lipoic acid. Research design: Histological, cytological and structural analysis of a combined treatment after a brain cryo-injury model in rats. Methods and procedures: Adult Wistar rats were subjected to cryogenic brain injury. A channelled-porous scaffold of ethyl acrylate and hydroxyethylacrylate, p(EA-co-HEA) was grafted into cerebral penumbra alone or combined with intraperitoneal LA administration. Histological and cytological evaluation was performed after 15 and 60 days and structural magnetic resonance (MRI) assessment was performed at 2 and 6 months after the surgery. Main outcomes and results: The scaffold was suitable for the establishment of different cellular types. The results obtained suggest that this strategy promotes blood vessels formation, decreased microglial response and neuron migration, particularly when LA was administrated. Conclusions: These evidences demonstrated that the combination of a channelled polymer scaffold with LA administration may represent a potential treatment for neural tissue repair after brain injury.The authors report no conflicts of interest. JMSL acknowledges funding through Programa de Ayudas a la Investigación Científica Universidad CEU-Cardenal Herrera (PRCEU-UCH 34/12), PRCEU-UCH 38/10 and programa ayudas a grupos consolidados 2014-15). CMR and MMP acknowledge financing through projects MAT2011-28791-C03-02 and ERA-NET NEURON project PRI-PIMNEU-2011-1372.Rocamonde, B.; Paradells, S.; Garcia Esparza, MA.; Sanchez Vives, M.; Sauro, S.; Martínez-Ramos, C.; Monleón Pradas, M.... (2016). Combined application of polyacrylate scaffold and lipoic acid treatment promotes neural tissue reparation after brain injury. Brain Injury. 30(2):208-216. https://doi.org/10.3109/02699052.2015.1091505S208216302Das, M., Mohapatra, S., & Mohapatra, S. S. (2012). New perspectives on central and peripheral immune responses to acute traumatic brain injury. Journal of Neuroinflammation, 9(1). doi:10.1186/1742-2094-9-236Jennett, B. (1972). Prognosis after Severe Head Injury. Neurosurgery, 19(CN_suppl_1), 200-207. doi:10.1093/neurosurgery/19.cn_suppl_1.200Kumar, S., Rao, S. L., Chandramouli, B. A., & Pillai, S. (2013). Reduced contribution of executive functions in impaired working memory performance in mild traumatic brain injury patients. Clinical Neurology and Neurosurgery, 115(8), 1326-1332. doi:10.1016/j.clineuro.2012.12.038Muehlschlegel, S., Carandang, R., Ouillette, C., Hall, W., Anderson, F., & Goldberg, R. (2013). Frequency and Impact of Intensive Care Unit Complications on Moderate-Severe Traumatic Brain Injury: Early Results of the Outcome Prognostication in Traumatic Brain Injury (OPTIMISM) Study. Neurocritical Care, 18(3), 318-331. doi:10.1007/s12028-013-9817-2Kaur, C., & Ling, E.-A. (2008). Antioxidants and Neuroprotection in the Adult and Developing Central Nervous System. Current Medicinal Chemistry, 15(29), 3068-3080. doi:10.2174/092986708786848640Helfaer MA, Kirsch JR, Traystman RJ. Radical scavenegers: penetration into brain following the ischemia and reperfusion. In: Krieglstein J O-S H, editor. Pharmacology of cerebral ischemia. Stuggart: Medpharma Scientific Publishers; 1994. p 297–309.Xia, W., Han, J., Huang, G., & Ying, W. (2010). Inflammation in ischaemic brain injury: Current advances and future perspectives. Clinical and Experimental Pharmacology and Physiology, 37(2), 253-258. doi:10.1111/j.1440-1681.2009.05279.xRocamonde, B., Paradells, S., Barcia, C., Garcia Esparza, A., & Soria, J. M. (2013). Lipoic Acid Treatment after Brain Injury: Study of the Glial Reaction. Clinical and Developmental Immunology, 2013, 1-8. doi:10.1155/2013/521939Rocamonde, B., Paradells, S., Barcia, J. M., Barcia, C., García Verdugo, J. M., Miranda, M., … Soria, J. M. (2012). Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury. Neuroscience, 224, 102-115. doi:10.1016/j.neuroscience.2012.08.028Bokara, K. K., Kim, J. Y., Lee, Y. I., Yun, K., Webster, T. J., & Lee, J. E. (2013). Biocompatability of carbon nanotubes with stem cells to treat CNS injuries. Anatomy & Cell Biology, 46(2), 85. doi:10.5115/acb.2013.46.2.85Walker, P. A., Aroom, K. R., Jimenez, F., Shah, S. K., Harting, M. T., Gill, B. S., & Cox, C. S. (2009). Advances in Progenitor Cell Therapy Using Scaffolding Constructs for Central Nervous System Injury. Stem Cell Reviews and Reports, 5(3), 283-300. doi:10.1007/s12015-009-9081-1Ito, Y., Hasuda, H., Kamitakahara, M., Ohtsuki, C., Tanihara, M., Kang, I.-K., & Kwon, O. H. (2005). A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material. Journal of Bioscience and Bioengineering, 100(1), 43-49. doi:10.1263/jbb.100.43Saracino, G. A. A., Cigognini, D., Silva, D., Caprini, A., & Gelain, F. (2013). Nanomaterials design and tests for neural tissue engineering. Chem. Soc. Rev., 42(1), 225-262. doi:10.1039/c2cs35065cBROWN, R., BLUNN, G., & EJIM, O. (1994). Preparation of orientated fibrous mats from fibronectin: composition and stability. Biomaterials, 15(6), 457-464. doi:10.1016/0142-9612(94)90225-9Ejim, O. S., Blunn, G. W., & Brown, R. A. (1993). Production of artificial-orientated mats and strands from plasma fibronectin: a morphological study. Biomaterials, 14(10), 743-748. doi:10.1016/0142-9612(93)90038-4Keilhoff, G., Stang, F., Wolf, G., & Fansa, H. (2003). Bio-compatibility of type I/III collagen matrix for peripheral nerve reconstruction. Biomaterials, 24(16), 2779-2787. doi:10.1016/s0142-9612(03)00084-xZhang, W., Chen, J., Tao, J., Jiang, Y., Hu, C., Huang, L., … Ouyang, H. W. (2013). The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials, 34(3), 713-723. doi:10.1016/j.biomaterials.2012.10.027Martínez-Ramos, C., Lainez, S., Sancho, F., García Esparza, M. A., Planells-Cases, R., García Verdugo, J. M., … Soria, J. M. (2008). Differentiation of Postnatal Neural Stem Cells into Glia and Functional Neurons on Laminin-Coated Polymeric Substrates. Tissue Engineering Part A, 14(8), 1365-1375. doi:10.1089/ten.tea.2007.0295Soria, J. M., Martínez Ramos, C., Salmerón Sánchez, M., Benavent, V., Campillo Fernández, A., Gómez Ribelles, J. L., … Barcia, J. A. (2006). Survival and differentiation of embryonic neural explants on different biomaterials. Journal of Biomedical Materials Research Part A, 79A(3), 495-502. doi:10.1002/jbm.a.30803Xie, J., Willerth, S. M., Li, X., Macewan, M. R., Rader, A., Sakiyama-Elbert, S. E., & Xia, Y. (2009). The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials, 30(3), 354-362. doi:10.1016/j.biomaterials.2008.09.046Wong, D. Y., Hollister, S. J., Krebsbach, P. H., & Nosrat, C. (2007). Poly(ɛ-Caprolactone) and Poly (L-Lactic-Co-Glycolic Acid) Degradable Polymer Sponges Attenuate Astrocyte Response and Lesion Growth in Acute Traumatic Brain Injury. Tissue Engineering, 13(10), 2515-2523. doi:10.1089/ten.2006.0440Martínez‐Ramos, C., Vallés‐Lluch, A., Verdugo, J. M. G., Ribelles, J. L. G., Barcia Albacar, J. A., Orts, A. B., … Pradas, M. M. (2012). Channeled scaffolds implanted in adult rat brain. Journal of Biomedical Materials Research Part A, 100A(12), 3276-3286. doi:10.1002/jbm.a.34273Rodríguez Hernández, J. C., Serrano Aroca, Á., Gómez Ribelles, J. L., & Pradas, M. M. (2008). Three-dimensional nanocomposite scaffolds with ordered cylindrical orthogonal pores. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 84B(2), 541-549. doi:10.1002/jbm.b.30902Paxinos G, Watson C. The rat brain in stereotaxic coordinates. San Diego, CA: Academic Press; 1986.Harting, M. T., Sloan, L. E., Jimenez, F., Baumgartner, J., & Cox, C. S. (2009). Subacute Neural Stem Cell Therapy for Traumatic Brain Injury. Journal of Surgical Research, 153(2), 188-194. doi:10.1016/j.jss.2008.03.037Wallenquist, U., Brännvall, K., Clausen, F., Lewén, A., Hillered, L., & Forsberg-Nilsson, K. (2009). Grafted neural progenitors migrate and form neurons after experimental traumatic brain injury. Restorative Neurology and Neuroscience, 27(4), 323-334. doi:10.3233/rnn-2009-0481Sun, D., Gugliotta, M., Rolfe, A., Reid, W., McQuiston, A. R., Hu, W., & Young, H. (2011). Sustained Survival and Maturation of Adult Neural Stem/Progenitor Cells after Transplantation into the Injured Brain. Journal of Neurotrauma, 28(6), 961-972. doi:10.1089/neu.2010.1697Doetsch, F., Caillé, I., Lim, D. A., García-Verdugo, J. M., & Alvarez-Buylla, A. (1999). Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain. Cell, 97(6), 703-716. doi:10.1016/s0092-8674(00)80783-7Fuentealba, L. C., Obernier, K., & Alvarez-Buylla, A. (2012). Adult Neural Stem Cells Bridge Their Niche. Cell Stem Cell, 10(6), 698-708. doi:10.1016/j.stem.2012.05.012Rice, A. (2003). Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Experimental Neurology, 183(2), 406-417. doi:10.1016/s0014-4886(03)00241-3Lee, C., & Agoston, D. V. (2010). Vascular Endothelial Growth Factor Is Involved in Mediating Increased De Novo Hippocampal Neurogenesis in Response to Traumatic Brain Injury. Journal of Neurotrauma, 27(3), 541-553. doi:10.1089/neu.2009.0905Sun, D., Bullock, M. R., Altememi, N., Zhou, Z., Hagood, S., Rolfe, A., … Colello, R. J. (2010). The Effect of Epidermal Growth Factor in the Injured Brain after Trauma in Rats. Journal of Neurotrauma, 27(5), 923-938. doi:10.1089/neu.2009.1209Verreck, G., Chun, I., Li, Y., Kataria, R., Zhang, Q., Rosenblatt, J., … Brewster, M. E. (2005). Preparation and physicochemical characterization of biodegradable nerve guides containing the nerve growth agent sabeluzole. Biomaterials, 26(11), 1307-1315. doi:10.1016/j.biomaterials.2004.04.040Park, K. I., Teng, Y. D., & Snyder, E. Y. (2002). The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nature Biotechnology, 20(11), 1111-1117. doi:10.1038/nbt751Teng, Y. D., Lavik, E. B., Qu, X., Park, K. I., Ourednik, J., Zurakowski, D., … Snyder, E. Y. (2002). Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proceedings of the National Academy of Sciences, 99(5), 3024-3029. doi:10.1073/pnas.05267889

    Bridges of biomaterials promote nigrostriatal pathway regeneration

    Full text link
    [EN] Repair of central nervous system (CNS) lesions is difficulted by the lack of ability of central axons to regrow, and the blocking by the brain astrocytes to axonal entry. We hypothesized that by using bridges made of porous biomaterial and permissive olfactory ensheathing glia (OEG), we could provide a scaffold to permit restoration of white matter tracts. We implanted porous polycaprolactone (PCL) bridges between the substantia nigra and the striatum in rats, both with and without OEG. We compared the number of tyrosine-hydroxylase positive (TH+) fibers crossing the striatal-graft interface, and the astrocytic and microglial reaction around the grafts, between animals grafted with and without OEG. Although TH+ fibers were found inside the grafts made of PCL alone, there was a greater fiber density inside the graft and at the striatal-graft interface when OEG was cografted. Also, there was less astrocytic and microglial reaction in those animals. These results show that these PCL grafts are able to promote axonal growth along the nigrostriatal pathway, and that cografting of OEG markedly enhances axonal entry inside the grafts, growth within them, and re-entry of axons into the CNS. These results may have implications in the treatment of diseases such as Parkinson's and others associated with lesions of central white matter tracts.Contract grant sponsor: Regional Government Health Department (Conselleria de Sanitat, Generalitat Valenciana) and Carlos III Health Institute of the Ministry of Health and Consumer Affairs (Spain) (Regenerative Medicine Programme) Contract grant sponsor: Spanish ministry of Education and Science; contract grant number: MAT 2006-13554-C02-02 Contract grant sponsor: Red de Terapia Celular TERCEL (RETICS), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovacion (ISCIII); contract grant number: RD12/0019/0010 (to J.A.) Contract grant sponsor: Spanish Science & Innovation Ministery; contract grant number: MAT2008-06434 (to M.M.P.) Contract grant sponsor: "Convenio de Colaboracion para la Investigacion Basica y Traslacional en Medicina Regenerativa," Instituto Nacional de Salud Carlos III, the Conselleria de Sanidad of the Generalitat Valenciana, and the Foundation Centro de Investigacion Principe FelipeGómez Pinedo, U.; Sanchez-Rojas, L.; Vidueira, S.; Sancho, FJ.; Martínez-Ramos, C.; Lebourg, M.; Monleón Pradas, M.... (2019). Bridges of biomaterials promote nigrostriatal pathway regeneration. Journal of Biomedical Materials Research Part B Applied Biomaterials. 107(1):190-196. https://doi.org/10.1002/jbm.b.34110S1901961071Pekny, M., Wilhelmsson, U., & Pekna, M. (2014). The dual role of astrocyte activation and reactive gliosis. Neuroscience Letters, 565, 30-38. doi:10.1016/j.neulet.2013.12.071Bliss, T. M., Andres, R. H., & Steinberg, G. K. (2010). Optimizing the success of cell transplantation therapy for stroke. Neurobiology of Disease, 37(2), 275-283. doi:10.1016/j.nbd.2009.10.003Tam, R. Y., Fuehrmann, T., Mitrousis, N., & Shoichet, M. S. (2013). Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach. Neuropsychopharmacology, 39(1), 169-188. doi:10.1038/npp.2013.237Skop, N. B., Calderon, F., Cho, C. H., Gandhi, C. D., & Levison, S. W. (2014). Improvements in biomaterial matrices for neural precursor cell transplantation. Molecular and Cellular Therapies, 2(1), 19. doi:10.1186/2052-8426-2-19Yasuhara, T., Kameda, M., Sasaki, T., Tajiri, N., & Date, I. (2017). Cell Therapy for Parkinson’s Disease. Cell Transplantation, 26(9), 1551-1559. doi:10.1177/0963689717735411Orive, G., Anitua, E., Pedraz, J. L., & Emerich, D. F. (2009). Biomaterials for promoting brain protection, repair and regeneration. Nature Reviews Neuroscience, 10(9), 682-692. doi:10.1038/nrn2685Walker, P. A., Aroom, K. R., Jimenez, F., Shah, S. K., Harting, M. T., Gill, B. S., & Cox, C. S. (2009). Advances in Progenitor Cell Therapy Using Scaffolding Constructs for Central Nervous System Injury. Stem Cell Reviews and Reports, 5(3), 283-300. doi:10.1007/s12015-009-9081-1Zhong, Y., & Bellamkonda, R. V. (2008). Biomaterials for the central nervous system. Journal of The Royal Society Interface, 5(26), 957-975. doi:10.1098/rsif.2008.0071Pérez‐GarnezM BarciaJA Gómez‐PinedoU Monleón‐PradasM Vallés‐LluchA.Materials for Central Nervous System Tissue Engineering Cells and Biomaterials in Regenerative Medicine. InTech;2014. Chap 7.Sinha, V. R., Bansal, K., Kaushik, R., Kumria, R., & Trehan, A. (2004). Poly-ϵ-caprolactone microspheres and nanospheres: an overview. International Journal of Pharmaceutics, 278(1), 1-23. doi:10.1016/j.ijpharm.2004.01.044Raisman, G. (2001). Olfactory ensheathing cells — another miracle cure for spinal cord injury? Nature Reviews Neuroscience, 2(5), 369-375. doi:10.1038/35072576Raisman, G., & Li, Y. (2007). Repair of neural pathways by olfactory ensheathing cells. Nature Reviews Neuroscience, 8(4), 312-319. doi:10.1038/nrn2099Fairless, R., & Barnett, S. C. (2005). Olfactory ensheathing cells: their role in central nervous system repair. The International Journal of Biochemistry & Cell Biology, 37(4), 693-699. doi:10.1016/j.biocel.2004.10.010Collins, A., Li, D., Mcmahon, S. B., Raisman, G., & Li, Y. (2017). Transplantation of Cultured Olfactory Bulb Cells Prevents Abnormal Sensory Responses during Recovery from Dorsal Root Avulsion in the Rat. Cell Transplantation, 26(5), 913-924. doi:10.3727/096368917x695353Navarro, X., Valero, A., Gudi�o, G., For�s, J., Rodr�guez, F. J., Verd�, E., … Nieto-Sampedro, M. (1999). Ensheathing glia transplants promote dorsal root regeneration and spinal reflex restitution after multiple lumbar rhizotomy. Annals of Neurology, 45(2), 207-215. doi:10.1002/1531-8249(199902)45:23.0.co;2-kGómez-Pinedo, U., Félez, M. C., Sancho-Bielsa, F. J., Vidueira, S., Cabanes, C., Soriano, M., … Barcia, J. A. (2008). Improved technique for stereotactic placement of nerve grafts between two locations inside the rat brain. Journal of Neuroscience Methods, 174(2), 194-201. doi:10.1016/j.jneumeth.2008.07.008HowardCV ReedMG.Unbiased Stereology: Three‐Dimensional Measurement in Microscopy. Oxford: Bioimaging Group;1998.Collier, T. J., & Springer, J. E. (1991). Co-grafts of embryonic dopamine neurons and adult sciatic nerve into the denervated striatum enhance behavioral and morphological recovery in rats. Experimental Neurology, 114(3), 343-350. doi:10.1016/0014-4886(91)90160-eBourke, J. L., Coleman, H. A., Pham, V., Forsythe, J. S., & Parkington, H. C. (2014). Neuronal Electrophysiological Function and Control of Neurite Outgrowth on Electrospun Polymer Nanofibers Are Cell Type Dependent. Tissue Engineering Part A, 20(5-6), 1089-1095. doi:10.1089/ten.tea.2013.0295Nga, V. D. W., Lim, J., Choy, D. K. S., Nyein, M. A., Lu, J., Chou, N., … Teoh, S.-H. (2015). Effects of Polycaprolactone-Based Scaffolds on the Blood–Brain Barrier and Cerebral Inflammation. Tissue Engineering Part A, 21(3-4), 647-653. doi:10.1089/ten.tea.2013.0779Pérez-Garnés, M., Martínez-Ramos, C., Barcia, J. A., Escobar Ivirico, J. L., Gómez-Pinedo, U., Vallés-Lluch, A., & Monleón Pradas, M. (2012). One-Dimensional Migration of Olfactory Ensheathing Cells on Synthetic Materials: Experimental and Numerical Characterization. Cell Biochemistry and Biophysics, 65(1), 21-36. doi:10.1007/s12013-012-9399-1Diban, N., Ramos-Vivas, J., Remuzgo-Martinez, S., Ortiz, I., & Urtiaga, A. (2015). Poly(ε-caprolactone) Films with Favourable Properties for Neural Cell Growth. Current Topics in Medicinal Chemistry, 14(23), 2743-2749. doi:10.2174/156802661466614121515393

    Modelo hidrodinámico de alta resolución del puerto de Algeciras – proyecto SAMPA2

    Get PDF
    El proyecto SAMPA, financiado por la Autoridad Portuaria de la Bahía de Algeciras (APBA) y Puertos del Estado entre los años 2010 y 2013, fue proyecto piloto para la integración de un modelo numérico de alta resolución en un sistema operacional en el cual el Grupo de Oceanografía Física de la Universidad de Málaga (GOFIMA) desarrolló el propio modelo hidrodinámico [Sammartino et al., 2014; Sánchez Garrido et al., 2014]. Los productos operacionales servidos por Puertos del Estado (portal PORTUS) y la APBA (sistema CMA), alimentados entre otros por las predicciones derivadas de SAMPA, representaron el primer ejemplo de difusión de un forecast océano-meteorológico accesible tanto al público generalizado como al personal técnico marítimo empleado en el puerto. El modelo numérico que estaba detrás de SAMPA, sin embargo, no tenía suficiente resolución para llegar a resolver la dinámica portuaria, y la APBA, en el 2015, financió la segunda generación del proyecto (SAMPA2), con el objetivo de cubrir ese hueco. Entre la segunda mitad del 2015 y durante todo el 2016, después de haber realizado un atento análisis de los aspectos mejorables del actual SAMPA, GOFIMA desarrolló un sistema completamente nuevo: un modelo anidado en tres dominios acoplados, que proporciona un aumento progresivo de resolución desde la escala regional hasta la portuaria. A eso se añade el valor añadido de unas herramientas de análisis de calidad de agua del Puerto de Algeciras de acuerdo con las indicaciones de la ROM5.1-13.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Biohybrids of scaffolding hyaluronic acid biomaterials plus adipose stem cells home local neural stem and endothelial cells: Implications for reconstruction of brain lesions after stroke.

    Full text link
    [EN] Endogenous neurogenesis in stroke is insufficient to replace the lost brain tissue, largely due to the lack of a proper biological structure to let new cells dwell in the damaged area. We hypothesized that scaffolds made of hyaluronic acid (HA) biomaterials (BM) could provide a suitable environment to home not only new neurons, but also vessels, glia and neurofilaments. Further, the addition of exogenous cells, such as adipose stem cells (ASC) could increase this effect. Athymic mice were randomly assigned to a one of four group: stroke alone, stroke and implantation of BM, stroke and implantation of BM with ASC, and sham operated animals. Stroke model consisted of middle cerebral artery thrombosis with FeCl3. After 30 days, animals underwent magnetic resonance imaging (MRI) and were sacrificed. Proliferation and neurogenesis increased at the subventricular zone ipsilateral to the ventricle and neuroblasts, glial, and endothelial cells forming capillaries were seen inside the BM. Those effects increased when ASC were added, while there was less inflammatory reaction. Three-dimensional scaffolds made of HA are able to home newly formed neurons, glia, and endothelial cells permitting the growth neurofilaments inside them. The addition of ASC increase these effects and decrease the inflammatory reaction to the implant.Contract grant sponsor: CIBER BBN Contract grant sponsor: ERANET NEURON CALL; contract grant number: PRI-PIMNEU-2011-1372 Contract grant sponsor: Spanish Science & Innovation Ministery; contract grant number: MAT 2011-28791-C03-01, MAT 2011-28791-C03-02 an Contract grant sponsor: TERCEL; contract grant number: RD12/0019/0010 Contract grant sponsor: Spanish Ministry of Economy and Competitiveness through grants MAT2015-66666-C3, and DPI2015-72863-EXPSanchez-Rojas, L.; Gómez-Pinedo, U.; Benito-Martin, MS.; León-Espinosa, G.; Rascón-Ramirez, F.; Lendinez, C.; Martínez-Ramos, C.... (2019). Biohybrids of scaffolding hyaluronic acid biomaterials plus adipose stem cells home local neural stem and endothelial cells: Implications for reconstruction of brain lesions after stroke. Journal of Biomedical Materials Research Part B Applied Biomaterials. 107(5):1598-1606. https://doi.org/10.1002/jbm.b.34252S159816061075Azad, T. D., Veeravagu, A., & Steinberg, G. K. (2016). Neurorestoration after stroke. Neurosurgical Focus, 40(5), E2. doi:10.3171/2016.2.focus15637Faralli, A., Bigoni, M., Mauro, A., Rossi, F., & Carulli, D. (2013). Noninvasive Strategies to Promote Functional Recovery after Stroke. Neural Plasticity, 2013, 1-16. doi:10.1155/2013/854597Yamashita, T., Ninomiya, M., Hernandez Acosta, P., Garcia-Verdugo, J. M., Sunabori, T., Sakaguchi, M., … Sawamoto, K. (2006). Subventricular Zone-Derived Neuroblasts Migrate and Differentiate into Mature Neurons in the Post-Stroke Adult Striatum. Journal of Neuroscience, 26(24), 6627-6636. doi:10.1523/jneurosci.0149-06.2006Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z., & Lindvall, O. (2002). Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature Medicine, 8(9), 963-970. doi:10.1038/nm747Doeppner, T. R., & Hermann, D. M. (2015). Editorial: Stem cells and progenitor cells in ischemic stroke—fashion or future? Frontiers in Cellular Neuroscience, 9. doi:10.3389/fncel.2015.00334Zhang, Z. G., & Chopp, M. (2015). Promoting brain remodeling to aid in stroke recovery. Trends in Molecular Medicine, 21(9), 543-548. doi:10.1016/j.molmed.2015.07.005Crapo, P. M., Medberry, C. J., Reing, J. E., Tottey, S., van der Merwe, Y., Jones, K. E., & Badylak, S. F. (2012). Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials, 33(13), 3539-3547. doi:10.1016/j.biomaterials.2012.01.044Ju, R., Wen, Y., Gou, R., Wang, Y., & Xu, Q. (2014). The Experimental Therapy on Brain Ischemia by Improvement of Local Angiogenesis with Tissue Engineering in the Mouse. Cell Transplantation, 23(1_suppl), 83-95. doi:10.3727/096368914x684998Zhou, K., Motamed, S., Thouas, G. A., Bernard, C. C., Li, D., Parkington, H. C., … Forsythe, J. S. (2016). Graphene Functionalized Scaffolds Reduce the Inflammatory Response and Supports Endogenous Neuroblast Migration when Implanted in the Adult Brain. PLOS ONE, 11(3), e0151589. doi:10.1371/journal.pone.0151589Elias, P. Z., & Spector, M. (2012). Implantation of a collagen scaffold seeded with adult rat hippocampal progenitors in a rat model of penetrating brain injury. Journal of Neuroscience Methods, 209(1), 199-211. doi:10.1016/j.jneumeth.2012.06.003Tang, J. D., & Lampe, K. J. (2018). From de novo peptides to native proteins: advancements in biomaterial scaffolds for acute ischemic stroke repair. Biomedical Materials, 13(3), 034103. doi:10.1088/1748-605x/aaa4c3Nih, L. R., Carmichael, S. T., & Segura, T. (2016). Hydrogels for brain repair after stroke: an emerging treatment option. Current Opinion in Biotechnology, 40, 155-163. doi:10.1016/j.copbio.2016.04.021Moshayedi, P., Nih, L. R., Llorente, I. L., Berg, A. R., Cinkornpumin, J., Lowry, W. E., … Carmichael, S. T. (2016). Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain. Biomaterials, 105, 145-155. doi:10.1016/j.biomaterials.2016.07.028Lindvall, O., & Kokaia, Z. (2011). Stem Cell Research in Stroke. Stroke, 42(8), 2369-2375. doi:10.1161/strokeaha.110.599654Reis, C., Wilkinson, M., Reis, H., Akyol, O., Gospodarev, V., Araujo, C., … Zhang, J. H. (2017). A Look into Stem Cell Therapy: Exploring the Options for Treatment of Ischemic Stroke. Stem Cells International, 2017, 1-14. doi:10.1155/2017/3267352Ikegame, Y., Yamashita, K., Hayashi, S.-I., Mizuno, H., Tawada, M., You, F., … Iwama, T. (2011). Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy, 13(6), 675-685. doi:10.3109/14653249.2010.549122Wei, X., Zhao, L., Zhong, J., Gu, H., Feng, D., Johnstone, B. H., … Du, Y. (2009). Adipose stromal cells-secreted neuroprotective media against neuronal apoptosis. Neuroscience Letters, 462(1), 76-79. doi:10.1016/j.neulet.2009.06.054Gómez-Pinedo, U., Sanchez-Rojas, L., Benito-Martin, M. S., Lendinez, C., León-Espinosa, G., Rascón-Ramirez, F. J., … Barcia, J. A. (2018). Evaluation of the Safety and Efficacy of the Therapeutic Potential of Adipose-Derived Stem Cells Injected in the Cerebral Ischemic Penumbra. Journal of Stroke and Cerebrovascular Diseases, 27(9), 2453-2465. doi:10.1016/j.jstrokecerebrovasdis.2018.05.001Rodríguez-Pérez, E., Lloret Compañ, A., Monleón Pradas, M., & Martínez-Ramos, C. (2016). Scaffolds of Hyaluronic Acid-Poly(Ethyl Acrylate) Interpenetrating Networks: Characterization and In Vitro Studies. Macromolecular Bioscience, 16(8), 1147-1157. doi:10.1002/mabi.201600028Davoust, C., Plas, B., Béduer, A., Demain, B., Salabert, A.-S., Sol, J. C., … Loubinoux, I. (2017). Regenerative potential of primary adult human neural stem cells on micropatterned bio-implants boosts motor recovery. Stem Cell Research & Therapy, 8(1). doi:10.1186/s13287-017-0702-3Bateman, M. E., Strong, A. L., Gimble, J. M., & Bunnell, B. A. (2018). Concise Review: Using Fat to Fight Disease: A Systematic Review of Nonhomologous Adipose-Derived Stromal/Stem Cell Therapies. STEM CELLS, 36(9), 1311-1328. doi:10.1002/stem.2847Seo, J. H., Kim, H., Park, E. S., Lee, J. E., Kim, D. W., Kim, H. O., … Cho, S.-R. (2013). Environmental Enrichment Synergistically Improves Functional Recovery by Transplanted Adipose Stem Cells in Chronic Hypoxic-Ischemic Brain Injury. Cell Transplantation, 22(9), 1553-1568. doi:10.3727/096368912x662390Palma-Tortosa, S., García-Culebras, A., Moraga, A., Hurtado, O., Perez-Ruiz, A., Durán-Laforet, V., … Lizasoain, I. (2017). Specific Features of SVZ Neurogenesis After Cortical Ischemia: a Longitudinal Study. Scientific Reports, 7(1). doi:10.1038/s41598-017-16109-7Lu, J., Manaenko, A., & Hu, Q. (2017). Targeting Adult Neurogenesis for Poststroke Therapy. Stem Cells International, 2017, 1-10. doi:10.1155/2017/5868632Faiz, M., Sachewsky, N., Gascón, S., Bang, K. W. A., Morshead, C. M., & Nagy, A. (2015). Adult Neural Stem Cells from the Subventricular Zone Give Rise to Reactive Astrocytes in the Cortex after Stroke. Cell Stem Cell, 17(5), 624-634. doi:10.1016/j.stem.2015.08.002Moraga, A., Pradillo, J. M., García-Culebras, A., Palma-Tortosa, S., Ballesteros, I., Hernández-Jiménez, M., … Lizasoain, I. (2015). Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia. Journal of Neuroinflammation, 12(1). doi:10.1186/s12974-015-0314-8Oh, J. S., Park, I. S., Kim, K. N., Yoon, D. H., Kim, S.-H., & Ha, Y. (2012). Transplantation of an adipose stem cell cluster in a spinal cord injury. NeuroReport, 23(5), 277-282. doi:10.1097/wnr.0b013e3283505ae2Erba, P., Terenghi, G., & J. Kingham, P. (2010). Neural Differentiation and Therapeutic Potential of Adipose Tissue Derived Stem Cells. Current Stem Cell Research & Therapy, 5(2), 153-160. doi:10.2174/157488810791268645Grudzenski, S., Baier, S., Ebert, A., Pullens, P., Lemke, A., Bieback, K., … Fatar, M. (2017). The effect of adipose tissue-derived stem cells in a middle cerebral artery occlusion stroke model depends on their engraftment rate. Stem Cell Research & Therapy, 8(1). doi:10.1186/s13287-017-0545-yEgashira, Y., Sugitani, S., Suzuki, Y., Mishiro, K., Tsuruma, K., Shimazawa, M., … Hara, H. (2012). The conditioned medium of murine and human adipose-derived stem cells exerts neuroprotective effects against experimental stroke model. Brain Research, 1461, 87-95. doi:10.1016/j.brainres.2012.04.033Cunningham, C. J., Redondo-Castro, E., & Allan, S. M. (2018). The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke. Journal of Cerebral Blood Flow & Metabolism, 38(8), 1276-1292. doi:10.1177/0271678x18776802Gutiérrez-Fernández, M., Otero-Ortega, L., Ramos-Cejudo, J., Rodríguez-Frutos, B., Fuentes, B., & Díez-Tejedor, E. (2015). Adipose tissue-derived mesenchymal stem cells as a strategy to improve recovery after stroke. Expert Opinion on Biological Therapy, 15(6), 873-881. doi:10.1517/14712598.2015.1040386Pérez‐GarnesM BarciaJA Gómez‐PinedoU Monleón PradasM Vallés‐LluchA(November 26th2014). Materials for Central Nervous System Tissue Engineering Cells and Biomaterials in Regenerative Medicine Daniel Eberli IntechOpen DOI: 10.5772/59339Wang, Y., Wei, Y. T., Zu, Z. H., Ju, R. K., Guo, M. Y., Wang, X. M., … Cui, F. Z. (2011). Combination of Hyaluronic Acid Hydrogel Scaffold and PLGA Microspheres for Supporting Survival of Neural Stem Cells. Pharmaceutical Research, 28(6), 1406-1414. doi:10.1007/s11095-011-0452-3Nih, L. R., Moshayedi, P., Llorente, I. L., Berg, A. R., Cinkornpumin, J., Lowry, W. E., … Carmichael, S. T. (2017). Engineered HA hydrogel for stem cell transplantation in the brain: Biocompatibility data using a design of experiment approach. Data in Brief, 10, 202-209. doi:10.1016/j.dib.2016.11.069Nih, L. R., Gojgini, S., Carmichael, S. T., & Segura, T. (2018). Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke. Nature Materials, 17(7), 642-651. doi:10.1038/s41563-018-0083-8Lin, R., & Iacovitti, L. (2015). Classic and novel stem cell niches in brain homeostasis and repair. Brain Research, 1628, 327-342. doi:10.1016/j.brainres.2015.04.029Ruddy, R. M., & Morshead, C. M. (2017). Home sweet home: the neural stem cell niche throughout development and after injury. Cell and Tissue Research, 371(1), 125-141. doi:10.1007/s00441-017-2658-0Mora-Lee, S., Sirerol-Piquer, M. S., Gutiérrez-Pérez, M., Gomez-Pinedo, U., Roobrouck, V. D., López, T., … García-Verdugo, J. M. (2012). Therapeutic Effects of hMAPC and hMSC Transplantation after Stroke in Mice. PLoS ONE, 7(8), e43683. doi:10.1371/journal.pone.0043683Boisserand, L. S. B., Kodama, T., Papassin, J., Auzely, R., Moisan, A., Rome, C., & Detante, O. (2016). Biomaterial Applications in Cell-Based Therapy in Experimental Stroke. Stem Cells International, 2016, 1-14. doi:10.1155/2016/6810562Adams, A. M., Arruda, E. M., & Larkin, L. M. (2012). Use of adipose-derived stem cells to fabricate scaffoldless tissue-engineered neural conduits in vitro. Neuroscience, 201, 349-356. doi:10.1016/j.neuroscience.2011.11.004Le Friec, A., Salabert, A.-S., Davoust, C., Demain, B., Vieu, C., Vaysse, L., … Loubinoux, I. (2017). Enhancing Plasticity of the Central Nervous System: Drugs, Stem Cell Therapy, and Neuro-Implants. Neural Plasticity, 2017, 1-9. doi:10.1155/2017/2545736Traystman, R. J. (2003). Animal Models of Focal and Global Cerebral Ischemia. ILAR Journal, 44(2), 85-95. doi:10.1093/ilar.44.2.85Doeppner, T. R., Kaltwasser, B., Teli, M. K., Sanchez-Mendoza, E. H., Kilic, E., Bähr, M., & Hermann, D. M. (2015). Post-stroke transplantation of adult subventricular zone derived neural progenitor cells — A comprehensive analysis of cell delivery routes and their underlying mechanisms. Experimental Neurology, 273, 45-56. doi:10.1016/j.expneurol.2015.07.023Karatas, H., Erdener, S. E., Gursoy-Ozdemir, Y., Gurer, G., Soylemezoglu, F., Dunn, A. K., & Dalkara, T. (2011). Thrombotic distal middle cerebral artery occlusion produced by topical FeCl3 application: A novel model suitable for intravital microscopy and thrombolysis studies. Journal of Cerebral Blood Flow & Metabolism, 31(6), 1452-1460. doi:10.1038/jcbfm.2011.8Karatas, H., Eun Jung, J., Lo, E. H., & van Leyen, K. (2018). Inhibiting 12/15-lipoxygenase to treat acute stroke in permanent and tPA induced thrombolysis models. Brain Research, 1678, 123-128. doi:10.1016/j.brainres.2017.10.024Zhou, F., Gao, S., Wang, L., Sun, C., Chen, L., Yuan, P., … Chen, X. (2015). Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model. Stem Cell Research & Therapy, 6(1). doi:10.1186/s13287-015-0078-1Mora-Lee, S., Sirerol-Piquer, M. S., Gutiérrez-Pérez, M., López, T., Casado-Nieto, M., Jauquicoam, C., … García-Verdugo, J.-M. (2011). Histological and ultrastructural comparison of cauterization and thrombosis stroke models in immune-deficient mice. Journal of Inflammation, 8(1), 28. doi:10.1186/1476-9255-8-2

    El magnetómetro por gradiente alternante de campo: una nueva herramienta para la caracterización de nanopartículas magnéticas en biofluidos y tejidos biológicos

    Get PDF
    Las aplicaciones que ofrecen las nanopartículas magnéticas basadas en sus interacciones con los campos magnéticos estáticos o variantes en el tiempo, son uno de los principales y más prometedores focos de investigación biomédica en la actualidad. La caracterización magnética de las partículas y de su comportamiento en el interior de materiales biológicos es un aspecto susceptible de numerosas mejoras, siendo además uno de los pasos preliminares fundamentales a la realización de cualquiera de los experimentos que las empleen. En este artículo se presenta una nueva herramienta que facilitará esta tarea, además de presentar futuras líneas de acción que ofrecerán nuevas posibilidades en el mundo de la nanobioingeniería, partiendo de una breve introducción teórica en la que se presentarán los principios físicos que se encuentran en la base de las aplicaciones biomédicas de las nanopartículas. Las aplicaciones que ofrecen las nanopartículas magnéticas basadas en sus interacciones con los campos magnéticos estáticos o variantes en el tiempo, son uno de los principales y más prometedores focos de investigación biomédica en la actualidad. La caracterización magnética de las partículas y de su comportamiento en el interior de materiales biológicos es un aspecto susceptible de numerosas mejoras, siendo además uno de los pasos preliminares fundamentales a la realización de cualquiera de los experimentos que las empleen. En este artículo se presenta una nueva herramienta que facilitará esta tarea, además de presentar futuras líneas de acción que ofrecerán nuevas posibilidades en el mundo de la nanobioingeniería, partiendo de una breve introducción teórica en la que se presentarán los principios físicos que se encuentran en la base de las aplicaciones biomédicas de las nanopartículas
    corecore