17,935 research outputs found

    1.5V fully programmable CMOS Membership Function Generator Circuit with proportional DC-voltage control

    Get PDF
    A Membership Function Generator Circuit (MFGC) with bias supply of 1.5 Volts and independent DC-voltage programmable functionalities is presented. The realization is based on a programmable differential current mirror and three compact voltage-to-current converters, allowing continuous and quasi-linear adjustment of the center position, height, width and slopes of the triangular/trapezoidal output waveforms. HSPICE simulation results of the proposed circuit using the parameters of a double-poly, three metal layers, 0.5 μm CMOS technology validate the functionality of the proposed architecture, which exhibits a maximum deviation of the linearity in the programmability of 7 %

    High Gain Amplifier with Enhanced Cascoded Compensation

    Get PDF
    A two-stage CMOS operational amplifier with both, gain-boosting and indirect current feedback frequency compensation performed by means of regulated cascode amplifiers, is presented. By using quasi-floating-gate transistors (QFGT) the supply requirements, the number of capacitors and the size of the compensation capacitors respect to other Miller schemes are reduced. A prototype was fabricated using a 0.5 μm technology, resulting, for a load of 45 pF and supply voltage of 1.65 V, in open-loop-gain of 129 dB, 23 MHz of gain-bandwidth product, 60o phase margin, 675 μW power consumption and 1% settling time of 28 ns

    Kinematic Adaptations of Forward And Backward Walking on Land and in Water

    Get PDF
    The aim of this study was to compare sagittal plane lower limb kinematics during walking on land and submerged to the hip in water. Eight healthy adults (age 22.1 ± 1.1 years, body height 174.8 ± 7.1 cm, body mass 63.4 ± 6.2 kg) were asked to cover a distance of 10 m at comfortable speed with controlled step frequency, walking forward or backward. Sagittal plane lower limb kinematics were obtained from three dimensional video analysis to compare spatiotemporal gait parameters and joint angles at selected events using two-way repeated measures ANOVA. Key findings were a reduced walking speed, stride length, step length and a support phase in water, and step length asymmetry was higher compared to the land condition (p<0.05). At initial contact, knees and hips were more flexed during walking forward in water, whilst, ankles were more dorsiflexed during walking backward in water. At final stance, knees and ankles were more flexed during forward walking, whilst the hip was more flexed during backward walking. These results show how walking in water differs from walking on land, and provide valuable insights into the development and prescription of rehabilitation and training programs

    Resolving galaxies in time and space: II: Uncertainties in the spectral synthesis of datacubes

    Full text link
    In a companion paper we have presented many products derived from the application of the spectral synthesis code STARLIGHT to datacubes from the CALIFA survey, including 2D maps of stellar population properties and 1D averages in the temporal and spatial dimensions. Here we evaluate the uncertainties in these products. Uncertainties due to noise and spectral shape calibration errors and to the synthesis method are investigated by means of a suite of simulations based on 1638 CALIFA spectra for NGC 2916, with perturbations amplitudes gauged in terms of the expected errors. A separate study was conducted to assess uncertainties related to the choice of evolutionary synthesis models. We compare results obtained with the Bruzual & Charlot models, a preliminary update of them, and a combination of spectra derived from the Granada and MILES models. About 100k CALIFA spectra are used in this comparison. Noise and shape-related errors at the level expected for CALIFA propagate to 0.10-0.15 dex uncertainties in stellar masses, mean ages and metallicities. Uncertainties in A_V increase from 0.06 mag in the case of random noise to 0.16 mag for shape errors. Higher order products such as SFHs are more uncertain, but still relatively stable. Due to the large number statistics of datacubes, spatial averaging reduces uncertainties while preserving information on the history and structure of stellar populations. Radial profiles of global properties, as well as SFHs averaged over different regions are much more stable than for individual spaxels. Uncertainties related to the choice of base models are larger than those associated with data and method. Differences in mean age, mass and metallicity are ~ 0.15 to 0.25 dex, and 0.1 mag in A_V. Spectral residuals are ~ 1% on average, but with systematic features of up to 4%. The origin of these features is discussed. (Abridged)Comment: A&A, accepte

    Microstructural and magnetic characterization of Fe- and Ir-based multilayers

    Get PDF
    Nominal [Fe(t)/Ir(t'')](n) (M/Mtype), [FeOx(t)/IrOx(t'')](n) (O/O), and [Fe(t)/IrOx(t'')](n) (M/O) multilayers have been prepared by magnetron sputtering at room temperature. Composition, structure, and magnetic behavior have been analyzed. In the M/M samples, the Fe and Ir phases are identified as bcc and fcc, respectively. The magnetism evolves from bulklike iron to granular behavior as the thickness of the Fe layers decreases. An induced magnetic moment, ferromagnetically coupled to Fe, is observed on Ir by x-ray magnetic circular dichroism (XMCD). Besides, the presence of negative remanent magnetization is observed in the M/M samples. As for the M/O samples, the stronger affinity of iron for oxygen displaces the oxygen atoms giving rise to actual heterostructures that strongly differ from the nominal ones. For similar thickness of the two layers the Fe layer become oxidized while a mixture of metal and oxide phases is found in the Ir layer. The increase of the Fe thickness leads to a metallic Ir layer and a highly coercive (similar to 4.4 kOe) core-shell metal-oxide structure in the Fe layers

    Effects of coherence on temporal resolution

    Get PDF
    Measuring small separations between two optical sources, either in space or in time, constitute an important metrological challenge as standard intensity-only measurements fail for vanishing separations. Contrarily, it has been established that appropriate coherent mode projections can appraise arbitrarily small separations with quantum-limited precision. However, the question of whether the optical coherence brings any metrological advantage to mode projections is still a point of debate. Here, we elucidate this problem by experimentally investigating the effect of varying coherence on estimating the temporal separation between two single-photon pulses. We show that, for an accurate interpretation, special attention must be paid to properly normalize the quantum Fisher information to account for the strength of the signal. Our experiment demonstrates that coherent mode projections are optimal for any degree of coherence
    corecore