8,876 research outputs found

    Finite temperature dynamics of vortices in the two dimensional anisotropic Heisenberg model

    Get PDF
    We study the effects of finite temperature on the dynamics of non-planar vortices in the classical, two-dimensional anisotropic Heisenberg model with XY- or easy-plane symmetry. To this end, we analyze a generalized Landau-Lifshitz equation including additive white noise and Gilbert damping. Using a collective variable theory with no adjustable parameters we derive an equation of motion for the vortices with stochastic forces which are shown to represent white noise with an effective diffusion constant linearly dependent on temperature. We solve these stochastic equations of motion by means of a Green's function formalism and obtain the mean vortex trajectory and its variance. We find a non-standard time dependence for the variance of the components perpendicular to the driving force. We compare the analytical results with Langevin dynamics simulations and find a good agreement up to temperatures of the order of 25% of the Kosterlitz-Thouless transition temperature. Finally, we discuss the reasons why our approach is not appropriate for higher temperatures as well as the discreteness effects observed in the numerical simulations.Comment: 12 pages, 8 figures, accepted for publication in European Physical Journal B (uses EPJ LaTeX

    Stellar population analysis of MaNGA early-type galaxies: IMF dependence and systematic effects

    Full text link
    We study systematics associated with estimating simple stellar population (SSP) parameters -- age, metallicity [M/H], α\alpha-enhancement [α\alpha/Fe] and IMF shape -- and associated M∗/LM_*/L gradients, of elliptical slow rotators (E-SRs), fast rotators (E-FRs) and S0s from stacked spectra of galaxies in the MaNGA survey. These systematics arise from (i) how one normalizes the spectra when stacking; (ii) having to subtract emission before estimating absorption line strengths; (iii) the decision to fit the whole spectrum or just a few absorption lines; (iv) SSP model differences (e.g. isochrones, enrichment, IMF). The MILES+Padova SSP models, fit to the Hβ_\beta, ⟨\langleFe⟩\rangle, TiO2SDSS_{\rm 2SDSS} and [MgFe] Lick indices in the stacks, indicate that out to the half-light radius ReR_e: (a) ages are younger and [α\alpha/Fe] values are lower in the central regions but the opposite is true of [M/H]; (b) the IMF is more bottom-heavy in the center, but is close to Kroupa beyond about Re/2R_e/2; (c) this makes M∗/LM_*/L about 2×2\times larger in the central regions than beyond Re/2R_e/2. While the models of Conroy et al. (2018) return similar [M/H] and [α\alpha/Fe] profiles, the age and (hence) M∗/LM_*/L profiles can differ significantly even for solar abundances and a Kroupa IMF; different responses to non-solar abundances and IMF parametrization further compound these differences. There are clear (model independent) differences between E-SRs, E-FRs and S0s: younger ages and less enhanced [α\alpha/Fe] values suggest that E-FRs and S0s are not SSPs, but relaxing this assumption is unlikely to change their inferred M∗/LM_*/L gradients significantly.Comment: 22 pages, 23 figures, accepted for publication in MNRA

    The half mass radius of MaNGA galaxies: Effect of IMF gradients

    Full text link
    Gradients in the stellar populations (SP) of galaxies -- e.g., in age, metallicity, stellar Initial Mass Function (IMF) -- can result in gradients in the stellar mass to light ratio, M∗/LM_*/L. Such gradients imply that the distribution of the stellar mass and light are different. For old SPs, e.g., in early-type galaxies at z∼0z\sim 0, the M∗/LM_*/L gradients are weak if driven by variations in age and metallicity, but significantly larger if driven by the IMF. A gradient which has larger M∗/LM_*/L in the center increases the estimated total stellar mass (M∗M_*) and reduces the scale which contains half this mass (Re,∗R_{e,*}), compared to when the gradient is ignored. For the IMF gradients inferred from fitting MILES simple SP models to the Hβ_\beta, ⟨\langleFe⟩\rangle, [MgFe] and TiO2SDSS_{\rm 2SDSS} absorption lines measured in spatially resolved spectra of early-type galaxies in the MaNGA survey, the fractional change in Re,∗R_{e,*} can be significantly larger than that in M∗M_*, especially when the light is more centrally concentrated. The Re,∗−M∗R_{e,*}-M_* correlation which results is offset by 0.3 dex to smaller sizes compared to when these gradients are ignored. Comparisons with `quiescent' galaxies at higher-zz must account for evolution in SP gradients (especially age and IMF) and the light profile before drawing conclusions about how Re,∗R_{e,*} and M∗M_* evolve. The implied merging between higher-zz and the present is less contrived if Re,∗/ReR_{e,*}/R_e at z∼0z\sim 0 is closer to our IMF-driven gradient calibration than to unity.Comment: 16 pages, 15 figures, accepted for publication in MNRA

    Localized magnetic plasmons in all-dielectric mu<0 metastructures

    Full text link
    Metamaterials are known to exhibit a variety of electromagnetic properties non-existing in nature. We show that an all-dielectric (non-magnetic) system consisting of deep subwavelength, high permittivity resonant spheres possess effective negative magnetic permeability (dielectric permittivity being positive and small). Due to the symmetry of the electromagnetic wave equations in classical electrodynamics, localized "magnetic" plasmon resonances can be excited in a metasphere made of such metamaterial. This is theoretically demonstrated by the coupled-dipole approximation and numerically for real spheres, in full agreement with the exact analytical solution for the scattering process by the same metasphere with effective material properties predicted by effective medium theory. The emergence of this phenomenon as a function of structural order within the metastructures is also studied. Universal conditions enabling effective negative magnetic permeability relate subwavelength sphere permittivity and size with critical filling fraction. Our proposal paves the way towards (all-dielectric) magnetic plasmonics, with a wealth of fascinating applications.Comment: 7 pages, 4 figures; figure 3 modified and new figure (4) added, with corresponding discussio

    Enhanced suppresion of localization in a continuous Random-Dimer Model

    Get PDF
    We consider a one-dimensional continuous (Kronig-Penney) extension of the (tight-binding) Random Dimer model of Dunlap et al. [Phys. Rev. Lett. 65, 88 (1990)]. We predict that the continuous model has infinitely many resonances (zeroes of the reflection coefficient) giving rise to extended states instead of the one resonance arising in the discrete version. We present exact, transfer-matrix numerical calculations supporting, both realizationwise and on the average, the conclusion that the model has a very large number of extended states.Comment: 10 pages, 3 Figures available on request, REVTeX 3.0, MA/UC3M/1/9

    Quiet Sun magnetic fields from simultaneous inversions of visible and infrared spectropolarimetric observations

    Full text link
    We study the quiet Sun magnetic fields using spectropolarimetric observations of the infrared and visible Fe I lines at 6301.5, 6302.5, 15648 and 15653 A. Magnetic field strengths and filling factors are inferred by the simultaneous fit of the observed Stokes profiles under the MISMA hypothesis. The observations cover an intra-network region at the solar disk center. We analyze 2280 Stokes profiles whose polarization signals are above noise in the two spectral ranges, which correspond to 40% of the field of view. Most of these profiles can be reproduced only with a model atmosphere including 3 magnetic components with very different field strengths, which indicates the co-existence of kG and sub-kG fields in our 1.5" resolution elements. We measure an unsigned magnetic flux density of 9.6 G considering the full field of view. Half of the pixels present magnetic fields with mixed polarities in the resolution element. The fraction of mixed polarities increases as the polarization weakens. We compute the probability density function of finding each magnetic field strength. It has a significant contribution of kG field strengths, which concentrates most of the observed magnetic flux and energy. This kG contribution has a preferred magnetic polarity, while the polarity of the weak fields is balanced.Comment: 16 pages and 14 figure
    • …
    corecore