1,374 research outputs found

    Collimation technique and testing applied to finite size polychromatic sources

    Get PDF
    Highly collimated beams are required in numerous applications and techniques. Different methods have been proposed for collimating monochromatic point light sources during the recent years. In this work, we analyze how a finite size and polychromatic light source can be collimated using only one diffraction grating and a CMOS camera placed after the source and the collimating lens. For this, we determine the period of the fringes diffracted by the grating and compare it with the period of the grating. Analytical equations are obtained to predict the amplitude of the fringes and their period. Since self-images disappear for finite size polychromatic sources at long distances from the grating, the period has to be measured close to the grating. In addition, we give an analytical equation to determine the error in the positioning of the source in terms of the source size and the setup parameters. Finally, we experimentally corroborate the obtained analytical formalism using a white LED of size s = 0.6 mm collimated by a lens with focal length f = 25 mm, and a Ronchi binary grating of period d = 250 µm. In this case, we achieve an experimental error in the positioning of the source with respect to the focal plane of the lens of dzexp = 92 µm

    Single-focus binary Fresnel zone plate

    Get PDF
    In this work, we propose and analyze a novel kind of binary Fresnel zone plate with single focus. It consists of a Fresnel zone plate whose zones have rough edges. We give analytical results for the intensity along the optical axis and demonstrate that lateral roughness of the zones produces the disappearance of secondary foci as a blurring of the edges. Besides, we corroborate its behavior by numerical simulations and experiments. This kind of Fresnel zone plate can be useful in a wide range of photonic applications, even for focusing with soft and hard X-rays or extreme ultraviolet radiation

    Sector-based Fresnel zone plate with extended depth of focus

    Get PDF
    A Sector-based Fresnel zone plate consists of a binary diffractive lens composed of a mosaic of sectors of Fresnel zone plates with different focal distances. When these focal distances are linearly distributed within the sectors, dual focus is obtained. Besides, we explore the possibility to generate an extended depth-of-focus lens by using a cubic distribution of the focal distances assigned to the sectors and optimizing the weight factors given to the terms of the cubic polynomial. Finally, numerical simulations based on the Rayleigh-Sommerfeld approach are carried out and experimental verifications by using a Spatial Light Modulator are performed, showing high agreement. The proposed kind of zone plate has potential applications in different research fields such as microscopy, lithography, data storage, or imaging

    Assessment of the repeatability in an automatic methodology for hyperemia grading in the bulbar conjunctiva

    Get PDF
    When the vessels of the bulbar conjunctiva get congested with blood, a characteristic red hue appears in the area. This symptom is known as hyperemia, and can be an early indicator of certain pathologies. Therefore, a prompt diagnosis is desirable in order to minimize both medical and economic repercussions. A fully automatic methodology for hyperemia grading in the bulbar conjunctiva was developed, by means of image processing and machine learning techniques. As there is a wide range of illumination, contrast, and focus issues in the images that specialists use to perform the grading, a repeatability analysis is necessary. Thus, the validation of each step of the methodology was performed, analyzing how variations in the images are translated to the results, and comparing them to the optometrist's measurements. Our results prove the robustness of our methodology to various conditions. Moreover, the differences in the automatic outputs are similar to the optometrist's ones

    Numerical model of the inhomogeneous scattering by the human lens

    Get PDF
    We present in this work a numerical model for characterizing the scattering properties of the human lens. After analyzing the scattering properties of two main scattering particles actually described in the literature through FEM (finite element method) simulations, we have modified a Monte Carlo''s bulk scattering algorithm for computing ray scattering in non-sequential ray tracing. We have implemented this ray scattering algorithm in a layered model of the human lens in order to calculate the scattering properties of the whole lens. We have tested our algorithm by simulating the classic experiment carried out by Van der Berg et al for measuring "in vitro" the angular distribution of forward scattered light by the human lens. The results show the ability of our model to simulate accurately the scattering properties of the human lens. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen
    corecore