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Highly collimated beams are required in numerous applications and techniques. Different methods
have been proposed for collimating monochromatic point light sources during the recent years. In this
work, we analyze how a finite size and polychromatic light source can be collimated using only one
diffraction grating and a CMOS camera placed after the source and the collimating lens. For this, we
determine the period of the fringes diffracted by the grating and compare it with the period of the grating.
Analytical equations are obtained to predict the amplitude of the fringes and their period. Since self-
images disappear for finite size polychromatic sources at long distances from the grating, the period has
to be measured close to the grating. In addition, we give analytical equation to determine the error in the
positioning of the source in terms of the source size and the set-up parameters. Finally, we experimentally
corroborate the obtained analytical formalism using a white LED of size s = 0.6 mm collimated by a
lens with focal length f = 25 mm, and a Ronchi binary grating of period d = 250 μm. In this case, we
achieve an experimental error in the positioning of the source with respect to the focal plane of the lens
of δzexp = 92 μm. © 2017 Optical Society of America
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1. INTRODUCTION

Theoretically, a beam is collimated when it does not change
neither its shape nor its size when it propagates along space.
Lamentably, this definition is highly restrictive and it can
be applied only when the light source is a monochromatic
point-like source. When this is not the case, the definition
of collimation must be slightly relaxed and we need to
talk about the “higher possible collimation degree of the
beam”. We define the collimation degree as the lesser
deviation of the rays forming the beam. Lesser deviation
results in higher collimation degree. Collimated beams are
crucial for many applications and techniques, scientific and
technological. It is a very important technique in areas such
as holography, information processing, metrology, lithography,
instrumentation, illumination, satellites alignment, free space
communications, etc. In general, the most simple technique
is the so-called auto-collimation technique. It consists of
measuring the size of the beam at two different distances and
comparing both measures [1]. Although, this technique is
quite imprecise due to the proper propagation of the beam that
modifies its shape in some way.

Other more precise techniques based on different optical

effects have been developed along the years [2–10]. These
techniques improve the collimation degree of the beams in
several orders of magnitude. Collimation methods based on
Talbot interferometry use Talbot effect to create a moiré pattern
at the output of a double grating system where the second
grating is placed at a self-image of the first one [1, 11–14]. This
idea has been modified in several ways in the recent years: by
lateral displacement of one of the gratings, by changing the
periods of the gratings, by changing their shape, etc [15–17].
Another simple procedure to evaluate the collimation degree
of a light beam consists of using the Lissajous figure produced
by a double diffractive optical system formed by a diffraction
grating and a more complex mask with two diffraction gratings
of the same period as the first grating but laterally shifted
[18]. With this technique, a continuous movement of the
grating is required to determine the collimation degree of the
beam. This fact is solved in [19] where the set-up is modified
by changing the mask by a more complex one. Thus, the
collimation state of the beam is directly measured without
moving any element of the set-up. Another technique consists
of replacing one of the linear gratings by a circular grating
[17], resulting in a method that does not need either any
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displacement of the optical elements to check the collimation
degree of the beam. Unfortunately, the collimation degree
is obtained by means of a complex analysis of the parabolic
fringes formed after the second grating, [20]. This advantage is
also found in a recently developed method based on measuring
the demagnification/magnification of the period of the self-
images produced by a diffraction grating after the collimating
lens [21]. In this case, only one diffraction grating is needed.
Summarizing, when the beam passes through the diffraction
grating, self-images with maximum contrast are located at
multiples of the Talbot distance, zT = 2 l d2/λ, where d is the
period of the grating, l is an integer, and λ is the illumination
wavelength [22]. The beam is collimated when the period of
the grating, d, and the period of the self-image at the sensor,
d′, are equal, since light after the grating propagates parallel to
the propagation axis that is perpendicular to the grating. Some
studies of collimation techniques for polychromatic sources
have been performed in [23–25], but most of the previous
works have been developed for monochromatic point light
sources where self-images are commonly studied. On the
other side, self-imaging of finite size polychromatic sources has
been exhaustively analyzed in [26]. The authors show how
polychromatic light produces a kind of continuous self-imaging
regime without the contrast inversion inherent to the Talbot
effect. Besides, finite size of the source produces a gradual
disappearance of the fringes for longer distances, lowering its
contrast.

In this work, we redefine the collimation technique shown in
[21] for the case of a polychromatic and finite size light source
instead of a monochromatic point source. The analysis becomes
more complex but analytical equations can also be obtained.
With them, we can predict the maximum distance where fringes
with high contrast can be obtained and the corresponding error
in the positioning of the source in terms of the source size
and the remaining set-up parameters. Collimation testing is
achieved by comparing the period of the diffraction fringes
with the period of the grating. Due to the finite size of
the source, and according to [26], the presented technique
must be applied to the zeroth or first self-image to obtain
enough contrast of the fringes to be measured accurately. In
addition, the period dependence on the distance from the
grating becomes parabolic and additional considerations must
be taken into account, in comparison to monochromatic point-
like light source.

2. BEAM COLLIMATION TECHNIQUE AND TESTING:
ANALYTICAL APPROACH

Let us consider the scheme depicted in Fig. 1. Firstly, we
consider a point and monochromatic incident light source
placed at a distance x0 from the optical axis, whose wavelength
is λ, that illuminates a system formed by a lens L whose focal
length is f , an amplitude diffraction grating G of period d, and
a CMOS camera. The distance from the source to the lens L is
z0, from the lens L to the grating G is z1, and from G to the
camera is z2, respectively. After calculations, we will extend
our analysis to polychromatic finite extension light sources by
performing two integrals over the size of the source and the
wavelength interval around the central wavelength.

Considering a point light source placed at a distance z0 from
a lens and x0 from the optical axis, the field at a distance z1 after

Fig. 1. Scheme of the set-up proposed for collimating the finite
size polychromatic source showing the parameters involved. L
is the collimating lens and G is the diffraction grating.

the lens in paraxial approximation can be expressed as [18, 21],
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ik f
2
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where U0 is the amplitude of the incident beam, x1 is the
transversal position after the lens, k = 2π/λ, and i =√−1 is the imaginary unit. After, the light beam passes
through the diffraction grating, which is characterized by
its Fourier series expansion, t(x) = ∑∞

n=−∞ anexp (inqx) ,
where an are the Fourier coefficients of the grating, q =
2π/d, and n are integers. The field after the grating
considering thin element approximation is then U′

1(x1) =
U1(x1)t(x1). To obtain the field at a distance z2 from
the grating we use again the Fresnel approach, U2(x2) =(
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) ∫
U1(x1)exp

[
i k
2z2

(x1 − x2)
2
]

dx1, resulting in

U2(x2, z2) = C2

∞

∑
n=−∞

ane
−i n2q2z2

2k{1+( f−z0)z2/[−z0z1+ f(z0+z1)]} (2)

×e
i nqx0

1+[ f(z0+z1)−z0(z1+z2)]/( f z2) e
i nqx2

1+( f−z0)z2/[ f(z0+z1)−z0z1]

×e
i

k[ f(x0−x2)
2−x2

0(z1+z2)−x2
2z0]

2[ f(z0+z1+z2)−z0(z1+z2)] ,

where C2 has taken all constants. Then, the intensity at the
observation plane, I2(x2, z2) = U2(x2, z2)U∗

2 (x2, z2), results in

I2(x2, z2) = C3

∞
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where ∗ means complex conjugated and C3 has taken again all
constants. Finally, we apply the finite size of the source and
polychromatic light by performing two integrals over x0 and λ
respectively,

IF(x2, z2) =
∫ s/2

−s/2

∫ λ0+�λ/2

λ0−�λ/2
I2(x2, z2)dλdx0, (4)

where we have considered that the spectrum of the light source
is homogeneous, with central wavelength λ0 and width Δλ,
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and that the source size is s. For this spectrum the integral is
easily solved,

IF(x2, z2) = C3

∞

∑
n,n′=−∞

ana∗n′

sinc
{

(n − n′) qs
2 [− f /z2 + (− f + z1 + z2)�z/ ( f z2)]

}

×sinc
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8π {1 − z2�z/ [ f 2 + ( f − z1)�z]}

)
(5)

e
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{1−z2�z/[ f 2+( f−z1)�z]} e

−i (n2−n′2)q2z2
2k0{1−z2�z/[ f 2+( f−z1)�z]} ,

where sinc(a) = sin(a)/a, k0 = 2π/λ0 and �z = z0 − f .
As can be observed, the effects of the polychromaticity and
finite size of the source are present into the sinc functions.
The first sinc function corresponds to the effect of the source
size and the second sinc function corresponds to the effect of
the polychromaticity. These functions modulate the amplitude
of the corresponding terms and the value of their arguments
determines which one has dominant behavior, [26]. We show
in Fig. 2 two examples of intensity computed with Eq. (5).
They correspond to two different situations. The first one
corresponds to a slightly divergent beam with a source of
size s = 50 μm and the second one corresponds to a slightly
divergent beam with a source of size s = 600 μm, both with
the same remaining parameters. As a general remark, we can
observe that fringes disappear as we separate from the grating.
This behavior is due to the finite size of the source. This fact
has also been reported in [26], considering a finite extension
polychromatic source propagating in free space. It is more
clear in Fig. 2(b) where this effect is notorious due to the large
size of the source. All these considerations make important to
experimentally measure the fringes at the zero-th or first Talbot
plane so that visibility of fringes is high enough to be accurately
measured. In fact, the maximum distance with visible fringes
is given by the sinc functions in Eq. (5). As a representative
example, we show in Fig. 3 both sinc functions considering
n = 1 and n′ = 0 for the same case as Fig. 2(b), where
t1 = sinc {qs/2 [− f /z2 + (− f + z1 + z2)�z/ ( f z2)]} and t2 =
sinc

(
q2z2�λ/8π

{
1 − z2�z/

[
f 2 + ( f − z1)�z

]})
. As can be

observed, the polychromaticity of the source is not restrictive
(dashed line) but the effect of the source size is notorious (solid
line). From t1 we can calculate the distance at which the
contrast of the fringes decays to zero, resulting

z′ =
[
�z ( f − z1) + f 2

]
/ [�z − f qs/2π] . (6)

In this particular case, the contrast of the fringes decays to
zero for around z′ = 10 mm. Anyway, we need to place the
observation plane closer to the grating than z′, in order to obtain
fringes with enough visibility to be measured.

Once we have determined the distance of the observation
plane to have high contrast fringes, the collimation method
consists of measuring the period of the fringes for constant
distances z1 and z2 and comparing it with the period of the
grating, that we assume well known. Thus, the period of the
fringes around Talbot planes, d′, can be extracted from the first
exponential factor of Eq. (5) resulting in

d′ = d
[
1 − z2�z

f 2 + ( f − z1)�z

]
. (7)

Fig. 2. Analytical near field intensity after the grating
illuminated by a polychromatic finite extension light source
passing through a lens obtained with Eq. (5). The used
parameters are λ0 = 580 nm, �λ = 400 nm, d = 250 μm,
f = 25 mm, z1 = 10 mm, n = n′ = (−9,−7, ...,−1, 0, 1, ..., 7, 9),
�z = 0.1 mm, and (a) s = 50 μm, (b) s = 600 μm.

This result is also obtained in [5]. From Eq. (7), the error in the
positioning of the source with respect to the focal point of the
collimating lens is given by

δz =
f 2

(z1 − f ) + d
δd z2

, (8)

where δd = d − d′ is the error in the period measurement. For
an experimental set-up with a fixed lens, known diffraction
grating and fixed distance between lens and grating, the error
in the positioning of the source decreases in terms of the
distance to the observation plane, z2. The uncertainty in
the positioning of the lens decreases as we separate from the
grating. Lamentably, the distance z2 cannot be arbitrary chosen
due to the finite size of the source that produces a decreasing of
the contrast of the fringes. We have defined z′ as the distance
at which the contrast of the fringes decays to zero, Eq. (6). As
a criterion, considering collimation situation, Δz = 0, we can
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Fig. 3. Analytical sinc functions from Eq. (5) obtained for n =
1 and n′ = 0. t1 (solid line) corresponds to the effect of the
finite size of the source and t2 (dashed line) corresponds to the
polychromaticity of the source. The used parameters are λ0 =
580 nm, �λ = 400 nm, d = 250 μm, f = 25 mm, z1 = 10 mm,
�z = 0.1 mm, and s = 600 μm.

establish zmax
2 = z′/2 as the maximum distance with fringes

with measurable contrast. Then substituting this value of z2
into Eq. (8), the error in the positioning of the source in terms
of the source size, s, can be defined as

δz =
f 2

z1 − f
(

1 + d2

2 s δd

) , (9)

We show in Fig. 4(a) the behavior of the fringes with f = 25 mm,
z1 = 10 mm, and z2 = 0.1 mm. Each column of the figure
corresponds to a vertical integration of the fringes for each Δz.
Besides we plot in Fig. 4(b) the dependence of the period on �z
following Eq. (7). As it was expected, the period of the fringes
is equal to the period of the grating for �z = 0 mm.

3. EXPERIMENTAL RESULTS

To corroborate the analytical results, we have performed an
experiment consisting of collimating a high power white LED
of size s = 0.6 mm by means of a lens. LEDs are not usually
circularly symmetric and therefore, we need to choose one
direction for collimation. We have chosen a collimating lens
of focal length f = 25 mm and a Ronchi diffraction grating
of period d = 250 μm. The camera used to acquire the
fringes is a UI-164xLE-C model by IDS, whose pixel size is
3.6 μm × 3.6 μm. Considering a central wavelength of λ0 =
580 nm, the corresponding Talbot distance is zT = 2d2/λ �
215.52 mm. Besides, considering collimation state in Eq. (6),
Δz = 0, z′ � 10, 41 mm and zmax

2 � 5.205 mm. Therefore,
we need to mesure the fringes in the zero-th order self-image
or “shadow” of the grating. We place the camera as close to
the grating as possible to assure high contrast of the fringes.
The experiment consists of displacing the source around the
focal plane of the collimating lens and acquiring the fringes
by using the CMOS camera. The movement is performed by
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Fig. 4. (a) Analytical fringes with d = 250 μm, f = 25 mm,
z1 = 10 mm, z2 = 0.1 mm and s = 600 μm and (b) period of the
fringes shown in Fig. 4(a).

using a motorized linear stage model M-521 by PI. We assure
the measurements free from vibrations and so on by pausing
the movement between every two measurements for a while.
We show in Fig. 5 the experimental fringes obtained in terms of
�z. Each column in Fig. 5 corresponds to a vertical integration
parallel to the fringes acquired with the camera. After that, we
calculate the period of the fringes in the same fashion as [21].
We use the variogram function which allows reducing noise
and filtering inhomogeneities of the illumination source. As
it is shown in Fig. 6(a), the same curvature to that obtained
analytically appears experimentally. We have fitted the data
to Eq. (7), calculating also the confidence intervals to 95%.
The coefficient of determination for the fitting is R2 = 0.999,
showing an excellent fitting of the experimental data to the
analytical equation. According to Eq. (7), the parameters
obtained from the fitting are: z1 = 6.456± 0.132 mm, z2 = 425±
33 μm. The residuals are shown in Fig. 6(b). The error in the
period estimation for the grating of period d = 250 μm has been
determined experimentally from Fig. 6, resulting δd = 17.2 nm
at Δz = 0. Substituting all values into Eq. 8, the theoretical error
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Fig. 5. Experimental fringes obtained for a grating of period
d = 250 μm using a white LED of size s = 0.6 mm and a
collimating lens of focal length f = 25 mm. The different colors
are due to inhomogeneities of the beam but do not influence
the period measurements.

in the positioning of the source results δz = 101.42 μm. From
the experimental data and the fitting we can predict the position
in which the beam results collimated. For this particular
experiment, the location is �z + α = 1148.93 μm, being α an
unknown parameter depending on the initial position of the
motorized stage. It corresponds to the position that fulfills
d′ = d. We may suppose the fitting as linear around d′ = d,
see zoom in Fig. 6(a), and therefore the error in positioning
the source at the focal point of the lens can be experimentally
obtained from Fig. 6(a) resulting in δzexp = 92 μm. This value is
estimated by measuring the horizontal distance from the fitted
curve to the confidence interval. As can be observed, it results
of the same order than the theoretical prediction.

4. CONCLUSIONS

Many accurate collimation techniques have been developed
for collimating monochromatic point light sources. In this
work, we present a collimation technique and testing valid
for polychromatic finite extension light sources based on
comparing the period of the fringes propagated from the
grating and the period of the proper grating. Analytical
equations are obtained to predict the error in the positioning
of the source in terms of the source size and set-up parameters.
Besides, experimental results that corroborate the analytical
approach are obtained when the light source is a white LED
of size s = 0.6 mm. The achieved experimental accuracy in
the positioning of the source with respect to the focal plane of
the lens results δzexp = 92 μm. This work is highly useful in
applications where finite size polychromatic sources need to be
collimated accurately.
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