
Single-focus binary Fresnel zone plate

Francisco Jose Torcal-Millaa,1, Luis Miguel Sanchez-Breab

aApplied Physics Department, Universidad de Zaragoza, 50009, Zaragoza (Spain).
bApplied Optics Complutense Group, Optics Department, Facultad de Ciencias

Fisicas,Universidad Complutense de Madrid, Plaza de las Ciencias 1, 28040, Madrid
(Spain)

Abstract

In this work, we propose and analyze a novel kind of binary Fresnel zone plate
with single focus. It consists of a Fresnel zone plate whose zones have rough
edges. We give analytical results for the intensity along the optical axis and
demonstrate that lateral roughness of the zones produces the disappearance of
secondary foci as a blurring of the edges. Besides, we corroborate its behavior
by numerical simulations and experiments. This kind of Fresnel zone plate can
be useful in a wide range of photonic applications, even for focusing with soft
and hard X-rays or extreme ultraviolet radiation.
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1. Introduction

Fresnel zone plates (FZPs) are optical di�ractive elements that concentrate
the light in a similar fashion as a conventional refractive lens. It results in a num-
ber of concentric annular zones which act somehow like a refractive lens but with
some additional di�racting e�ects due to the edges between zones. The dimen-
sions of the zones are based on the Fresnel zone concept [1]. FZPs have been an-
alyzed from several points of view and performances, [2, 3, 4, 5, 6]. It appears as
a fundamental part in applications such as spectroscopy, nanolithography, near-
�eld and far-�eld optical microscopy, or optical antennas, [7, 8, 9, 10, 11, 12],
involving also X-rays [13, 14] and extreme-ultraviolet radiation. The zones of
FZPs have blazed pro�les for an optimal performance, but binary phase or am-
plitude FZPs are also possible, being easier in manufacturing, [15]. Although,
due to di�ractive e�ects, binary FZPs present secondary foci that worsen the
behavior of the lens. Some research has been developed in this sense. In [16] the
authors demonstrate that secondary foci can be suppressed by several orders of
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magnitude using a photon sieve. On the other side, in [17, 18] secondary foci are
suppressed by using a Gabor Zone plate. In this work, we present and analyze
the behavior of a kind of binary amplitude FZP whose zones edges present a
certain random roughness that cancels secondary foci of the FZP. We obtain
analytical equations describing the cancellation of secondary foci in terms of
the roughness of the rings edges. Following, we corroborate the theoretical for-
malism by numerical simulations and experiments, �nding a great agreement
between them. As a comment, it is important to notice that the presented
formalism is also valid for binary phase FZPs.

2. Theoretical approach

Firstly, let us consider a binary annular aperture without random roughness
in the edges. By using the Fresnel approach for propagation, the �eld on axis
after the annular aperture illuminated by a plane wave can be calculated as [1]

Ua = A0
eikz

ikz

ˆ 2π

0
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ri

ei
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0
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where A0 is the amplitude of the incoming beam, λ is the wavelength, z is the
distance along the optical axis, ri is the inner radio, and ro is the outer radio of
the aperture. Particularly, for a FZP the inner and outer radii of the annular
apertures are approximately given by ri,m =

√
(m− 1)λf and ro,m =

√
mλf ,

respectively, being f the focal length of the desired FZP and m even numbers
[1]. We may substitute these radii into Equation 1 and calculate the intensity
di�racted by each annular aperture by multiplying by its complex conjugated.
Thus, carrying out the summation over all apertures of the Fresnel zone plate,
m = 1, 2, ...,M , the intensity along the optical axis produced by a FZP is given
by
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where ∗ means complex conjugated and M is the order of the last ring. Now,
let us consider a certain random roughness in the radii of each annular aperture
in the following way

Ura = A0
eikz
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where αi and αo are unknown parameters that follow a certain random proba-
bilistic distribution. The �eld calculated from Equation 3 results
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Figure 1: Fresnel zone plate with rough edges between zones and the following parameters:
D ≈ 440 µm, λ = 630 nm, f = 5 mm, σ = 2 µm and C = 0 µm. σ and C de�ne the
roughness in the frontiers of the ring as we explain following.

Since αi and αo are given by random distributions, the intensity di�racted
by an ensemble of concentric irregular rings can be expressed by using the
corresponding joint probability density function, p(α), as [18]

Ir =

ˆ ∞
−∞

ˆ ∞
−∞

∑
m,m′

Ura,mU
r∗
a,m′p (αi,m, αo,m, αi,m′ , αo,m′)


×dαi,mdαo,mdαi,m′dαo,m′ . (5)

Thus, we have several random variables for each annular aperture into the in-
tensity. An example of FZP of diameter D and rough zones edges is shown in
Fig. 1.

Considering Gaussian distributions, the joint probability density function
for each aperture is given by [18]

p(α) =
1

4 (1− C2)π2σ4

×e
−α2

i,m
−α2

i,m′
+2Cαi,mαi,m′−α

2
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2
o,m′

+2Cαo,mαo,m′

2(1−C)σ2 , (6)

where α = (αi,m, αo,m, αi,m′ , αo,m′), C is the correlation coe�cient, 0 ≤ C ≤ 1
, and σ is the standard deviation of the radii with respect to the corresponding
radii without roughness, [18, 19]. We consider that inner and outer radii are
uncorrelated. Besides, we consider the same statistical parameters for all aper-
tures. Then, summations in Equation 5 can be taken out of the integrals and
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the intensity along the optical axis results
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The two �rst terms are formally equal and correspond to the inner and outer
radii of each annular aperture. They depend on the correlation coe�cient and
the standard deviation of the random rough edges. On the other hand, the
third and fourth terms do not depend on the correlation coe�cient and, as
simulations reveals, they are responsible of cancelling the secondary foci. In
addition, a translation of the foci along axis due to the rough edges is also

noticed. It is given by the term
(
kσ2/z

)2
into the quotients of Equation 7. Now,

performing the limit σ → 0, we may recover the intensity distribution without
randomness, Equation 2. On the other hand, performing the summations and
using the de�nitions given before for the inner and outer radii of the di�erent
zones, being M the order of the last ring, Equation 7 simpli�es to
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where we have considered that di�erent points along the perimeter of a ring are
uncorrelated, C = 0.

The limit C = 0 means that two joint points of the edge of the ring are
uncorrelated. It happens, for example, when the lens is engraved pixel by pixel
or line by line, as a printer does. We show in Fig. 2 the intensity along axis
calculated with Equation 8 corresponding to di�erent amounts of roughness in
the edges. As can be observed, the secondary foci disappear for a certain amount
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Figure 2: Theoretical intensity along the optical axis calculated with Equation 8 for di�erent
amounts of roughness in the edges of the zones of a FZP with the following parameters:
D ≈ 400 µm, λ = 630 nm, f = 5 mm, and C = 0 µm.

of roughness. Despite primary focus decays to a half for this case, it is the only
one that survives for a certain roughness forward. Therefore, random edges
on binary amplitude FZPs make them single-focus lenses, cancelling di�ractive
e�ects.

In addition, we show in Fig. 3 the evolution of the four main foci in terms of
the roughness of the edges. For a FZP of focal length f = 5 mm and diameter
D = 400 µm all secondary foci decays almost to zero intensity for σ = 3 µm.
There are more secondary foci that goes to zero before the foci shown in Fig. 3
but we do not show them into the �gure for clearness. Anyway, for σ = 2 µm
the secondary foci decrease to a 5% and the primary focus still has around 50%
of the intensity with respect of the non-rough FZP.

Figure 3: Evolution of the main foci intensity in terms of the roughness of the edges of a FZP
with the following parameters: D ≈ 400 µm, λ = 630 nm, f = 5 mm, and C = 0 µm.
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3. Numerical simulations

Following, to corroborate the analytical results we have performed a numer-
ical simulation using a fast-Fourier transform based direct integration method
that uses the Rayleigh-Sommerfeld approach, [20]. Besides, this method allows
investigating the behavior of the FZP out of axis. Firstly, we de�ne the lens as
an ensemble of concentric rings with a certain amount of edge roughness in the
same fashion as Fig. 1. The intensity along the optical axis calculated numeri-
cally for the same parameters as Fig. 2 is shown in Fig. 4. Foci result slightly
wider than for the analytical approach due to numerical issues and truncations.
Besides, it is less sampled since we have used fewer points than for the analytical
approach due to numerical and computational memory restrictions. This is the
reason why secondary foci do not appear clearly in Fig. 4.

Figure 4: Intensity along optical axis calculated numerically for di�erent amounts of roughness
in a FZP with the following parameters: D ≈ 400 µm, λ = 630 nm, f = 5mm, and C = 0 µm.

Anyway, numerical simulations clearly corroborate the theoretical approach.
On the other hand, despite the random edges and the disappearance of sec-
ondary foci, the propagating intensity does not accumulate noise as can be
observed in Fig. 5 and Fig. 6. We show the intensity pro�le for σ = 0 µm
and σ = 4 µm , Fig. 5. The power of the main focus decreases but its shape
remains, making it still valid for applications, Fig. 6.

4. Experimental veri�cation

Finally, we have performed an experiment using a He-Ne laser (λ = 638 nm),
a Spatial Light Modulator (SLM) model LC-R 2500 by HoloEye, (pixel size of
19 µm, resolution 1024x798 pixels) and a CMOS camera model DMx 72BUC02
by Imaging Source (pixel size 2.2 × 2.2 µm). The experiment consists of im-
printing the designed FZP into the amplitude con�gured SLM and taking the
intensity with the CMOS camera moving it along the optical axis by using a
motorized linear stage. We show in Fig. 7 the intensity along the optical axis
around the principal and secondary focus for a FZP of diameter 9.7 mm, focal
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Figure 5: Numerical intensity pro�le propagation of a FZP with the following parameters:
D ≈ 400 µm, λ = 630 nm, f = 5 mm, and C = 0 µm. (a) σ = 0 µm and (b) σ = 4 µm.

Figure 6: Intensity at the primary focus of a FZP of diameter D ≈ 400 µm focal length
f = 5 mm and correlation coe�cient C = 0 µm calculated numerically considering a plane
wave of λ = 630 nm. (a) σ = 0 µm and (b) σ = 4 µm.

length f = 33 mm, and two amounts of roughness. The displacement of the
foci due to the random edges with respect of its nominal position is also experi-
mentally observed. In addition, we show in Fig. 8 an image of the experimental
focal spot without, Fig. 8a, and with rough edges, Fig. 8b. Both are very
similar and roughness in the zones edges do not a�ect to the focusing properties
of the primary focus except for a decreasing in contrast.

Conclusions

Summarizing, a kind of binary amplitude Fresnel zone plate with single focus
has been proposed and analyzed. It consists of a Fresnel zone plate with random
roughness at the edges of the di�erent zones. We theoretically, numerically, and
experimentally demonstrate how this kind of lens cancels secondary foci inherent
to Fresnel zone plates. The developed formalism can be easily extended to binary
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Figure 7: Experimental intensity along axis around the principal focus (a) and the secondary
focus (b) for a FZP with the following parameters: D ≈ 9.7 mm, λ = 632.8 nm, f = 33 mm,
C = 0 µm, and di�erent amounts of randomness: σ = 0 µm (solid line) and σ = 19 µm
(dashed line). δ and ε are unknown constants dependent on the initial position of the linear
stage used for displacing the camera.

phase Fresnel zone plates and, aside from the theoretical interest, this kind of
zone plates can be useful in a wide range of photonic applications that can also
involve soft and hard X-rays or extreme ultra-violet radiation.
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