129 research outputs found

    p53 and bcl-2 expression in high-grade B-cell lymphomas: correlation with survival time.

    Get PDF
    B-cell high-grade lymphomas are heterogeneous in terms of histology, clinical presentation, treatment response and prognosis. As bcl-2 and p53 gene deregulations are frequently involved in several types of lymphoid malignancies, we aimed our investigation at the study of the relation between bcl-2 and p53 expression and survival probability in a group of 119 patients with B-cell high-grade lymphoma. These were obtained from the Virgen de la Salud Hospital, Toledo, Spain (73 cases), John Radcliffe Hospital, Oxford, UK (31 cases), and the Istituto Nazionale dei Tumori, Milan, Italy (15 cases). The relation between bcl-2 protein expression and survival was small, depending on the primary localisation of the tumour (in lymph node of mucosae), and lacked a significant correlation with overall survival. In contrast with this, p53 expression was related to survival probability in our series, this relation being both significant and independent of histological diagnosis. p53-positive patients showed a sudden decrease in life expectancy in the first months after diagnosis. Multivariant regression analysis confirmed that the only parameters significantly related with survival were extranodal origin, which is associated with a better prognosis, and p53 expression, which indicates a poor prognosis. Simultaneous expression of bcl-2 and p53 was associated with a poorer prognosis than p53 alone. This is particularly significant for large B-cell lymphomas presenting in lymph nodes. The cumulative poor effect of both p53 and bcl-2 in large B-cell lymphomas, which is more significant in nodal tumours, could confirm the existence of a multistep genetic deregulation in non-Hodgkin's lymphoma. This indicates that the genetic mechanisms controlling apoptosis and their disregulation are critical steps in the progression of lymphomas

    The DO-KB Knowledgebase: a 20-year journey developing the disease open science ecosystem.

    Get PDF
    In 2003, the Human Disease Ontology (DO, https://disease-ontology.org/) was established at Northwestern University. In the intervening 20 years, the DO has expanded to become a highly-utilized disease knowledge resource. Serving as the nomenclature and classification standard for human diseases, the DO provides a stable, etiology-based structure integrating mechanistic drivers of human disease. Over the past two decades the DO has grown from a collection of clinical vocabularies, into an expertly curated semantic resource of over 11300 common and rare diseases linking disease concepts through more than 37000 vocabulary cross mappings (v2023-08-08). Here, we introduce the recently launched DO Knowledgebase (DO-KB), which expands the DO\u27s representation of the diseaseome and enhances the findability, accessibility, interoperability and reusability (FAIR) of disease data through a new SPARQL service and new Faceted Search Interface. The DO-KB is an integrated data system, built upon the DO\u27s semantic disease knowledge backbone, with resources that expose and connect the DO\u27s semantic knowledge with disease-related data across Open Linked Data resources. This update includes descriptions of efforts to assess the DO\u27s global impact and improvements to data quality and content, with emphasis on changes in the last two years

    p27(Kip1 )is expressed in proliferating cells in its form phosphorylated on threonine 187

    Get PDF
    BACKGROUND: G1/S cell cycle progression requires p27(Kip1 )(p27) proteolysis, which is triggered by its phosphorylation on threonine (Thr) 187. Since its levels are abundant in quiescent and scarce in cycling cells, p27 is an approved marker for quiescent cells, extensively used in histopathology and cancer research. METHODS: However here we showed that by using a specific phosphorylation site (pThr187) antibody, p27 is detectable also in proliferative compartments of normal, dysplastic and neoplastic tissues. RESULTS: In fact, whereas un-phosphorylated p27 and MIB-1 showed a significant inverse correlation (Spearman R = -0.55; p < 0,001), pThr187-p27 was positively and significantly correlated with MIB-1 expression (Spearman R = 0.88; p < 0,001). Thus proliferating cells only stain for pThr187-p27, whereas they are un-reactive with the regular p27 antibodies. However increasing the sensitivity of the immunocytochemistry (ICH) by the use of an ultra sensitive detection system based on tiramide signal amplification, simultaneous expression and colocalisation of both forms of p27 was shown in proliferating compartments nuclei by double immunofluorescence and laser scanning confocal microscopy studies. CONCLUSION: Overall, our data suggest that p27 expression also occurs in proliferating cells compartments and the combined use of both regular and phospho- p27 antibodies is suggested

    Transcriptomal profiling of the cellular response to DNA damage mediated by Slug (Snai2)

    Get PDF
    Snai2-deficient cells are radiosensitive to DNA damage. The function of Snai2 in response to DNA damage seems to be critical for its function in normal development and cancer. Here, we applied a functional genomics approach that combined gene-expression profiling and computational molecular network analysis to obtain global dissection of the Snai2-dependent transcriptional response to DNA damage in primary mouse embryonic fibroblasts (MEFs), which undergo p53-dependent growth arrest in response to DNA damage. Although examination of the response showed that overall expression of p53 target gene expression patterns was similarly altered in both control and Snai2-deficient cells, we have identified and validated candidate Snai2 target genes linked to Snai2 gene function in response to DNA damage. This work defines for the first time the effect of Snai2 on p53 target genes in cells undergoing growth arrest, elucidates the Snai2-dependent molecular network induced by DNA damage, points to novel putative Snai2 targets, and suggest a mechanistic model, which has implications for cancer management

    The expression of p53-induced protein with death domain (Pidd) and apoptosis in oral squamous cell carcinoma

    Get PDF
    The Pidd (p53-induced protein with death domain) gene was shown to be induced by the tumour suppressor p53 and to mediate p53-dependent apoptosis in mouse and human cells, through interactions with components of both the mitochondrial and the death receptor signalling pathways. To study the role of Pidd in clinical tumours, we measured its expression by quantitative reverse transcription-PCR in microdissected oral squamous cell carcinomas (OSCC) with and without p53 mutation. Tumour cell apoptosis was assessed by in situ terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling. Tumour proliferation was assessed by immunohistochemical staining for the Ki-67 antigen. We found a wide range of Pidd expression among OSCC. Statistical analysis revealed an association between Pidd expression and apoptotic index (Mann–Whitney test, P<0.001), consistent with a role of Pidd in apoptosis in this tumour type. Furthermore, we showed a positive correlation between apoptotic index and proliferative index that has not been previously described for OSCC. There was no correlation between Pidd expression and the p53 mutation status of these tumours, suggesting that Pidd expression may be regulated by p53-independent mechanisms. Further characterisation of these molecular defects in the control of proliferation and apoptosis should help in developing treatments that target OSCC according to their biological properties

    An immunohistochemical study of the antinociceptive effect of calcitonin in ovariectomized rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Calcitonin is used as a treatment to reduce the blood calcium concentration in hypercalcemia and to improve bone mass in osteoporosis. An analgesic effect of calcitonin has been observed and reported in clinical situations. Ovariectomaized (OVX) rats exhibit the same hormonal changes as observed in humans with osteoporosis and are an animal model of postmenopousal osteoporosis. The aim of this study to investigate antinociceptive effect of calcitonin in OVX rats using the immunohistochemical study.</p> <p>Methods</p> <p>We assessed the antinociceptive effects of calcitonin in an ovariectomized (OVX) rat model, which exhibit osteoporosis and hyperalgesia, using the immunohistochemical method. Fifteen rats were ovariectomized bilaterally, and ten rats were received the same surgery expected for ovariectomy as a sham model. We used five groups: the OVX-CT (n = 5), the sham-CT (n = 5), and the OVX-CT-pcpa (n = 5) groups recieved calcitonin (CT: 4 U/kg/day), while OVX-vehi (n = 5) and the sham-vehi (n = 5) groups received vehicle subcutaneously 5 times a week for 4 weeks. The OVX-CT-pcpa-group was given traperitoneal injection of p-chlorophenylalanine (pcpa; an inhibitor of serotonin biosynthesis) (100 mg/kg/day) in the last 3 days of calcitonon injection. Two hours after 5% formalin (0.05 ml) subcutaneously into the hind paw, the L5 spinal cord were removed and the number of Fos-immunoreactive (ir) neurons were evaluated using the Mann-Whitney-U test.</p> <p>Results</p> <p>The numbers of Fos-ir neurons in the OVX-CT and sham-CT groups were significantly less than in the OVX-vehi and sham-vehi groups, respectively (p = 0.0090, p = 0.0090). The number of Fos-ir neurons in the OVX-CT-pcpa-group was significantly more than that of the OVX-CT-group (p = 0.0283), which means pcpa inhibits calcitonin induced reduction of c-Fos production.</p> <p>Conclusion</p> <p>The results in this study demonstrated that 1) the increase of c-Fos might be related to hyperalgesia in OVX-rats. 2) Calcitonin has an antinociceptive effect in both OVX and sham rats. 3) The central serotonergic system is involved in the antinociceptive properties of calcitonin.</p

    Gene Dosage, Expression, and Ontology Analysis Identifies Driver Genes in the Carcinogenesis and Chemoradioresistance of Cervical Cancer

    Get PDF
    Integrative analysis of gene dosage, expression, and ontology (GO) data was performed to discover driver genes in the carcinogenesis and chemoradioresistance of cervical cancers. Gene dosage and expression profiles of 102 locally advanced cervical cancers were generated by microarray techniques. Fifty-two of these patients were also analyzed with the Illumina expression method to confirm the gene expression results. An independent cohort of 41 patients was used for validation of gene expressions associated with clinical outcome. Statistical analysis identified 29 recurrent gains and losses and 3 losses (on 3p, 13q, 21q) associated with poor outcome after chemoradiotherapy. The intratumor heterogeneity, assessed from the gene dosage profiles, was low for these alterations, showing that they had emerged prior to many other alterations and probably were early events in carcinogenesis. Integration of the alterations with gene expression and GO data identified genes that were regulated by the alterations and revealed five biological processes that were significantly overrepresented among the affected genes: apoptosis, metabolism, macromolecule localization, translation, and transcription. Four genes on 3p (RYBP, GBE1) and 13q (FAM48A, MED4) correlated with outcome at both the gene dosage and expression level and were satisfactorily validated in the independent cohort. These integrated analyses yielded 57 candidate drivers of 24 genetic events, including novel loci responsible for chemoradioresistance. Further mapping of the connections among genetic events, drivers, and biological processes suggested that each individual event stimulates specific processes in carcinogenesis through the coordinated control of multiple genes. The present results may provide novel therapeutic opportunities of both early and advanced stage cervical cancers

    Non-protein coding RNA biomarkers and differential expression in cancers: a review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In these years a huge number of human transcripts has been found that do not code for proteins, named non-protein coding RNAs. In most cases, small (miRNAs, snoRNAs) and long RNAs (antisense RNA, dsRNA, and long RNA species) have many roles, functioning as regulators of other mRNAs, at transcriptional and post-transcriptional level, and controlling protein ubiquitination and degradation. Various species of npcRNAs have been found differentially expressed in different types of cancer. This review discusses the published data and new results on the expression of a subset of npcRNAs.</p> <p>Conclusion</p> <p>These results underscore the complexity of the RNA world and provide further evidence on the involvement of functional RNAs in cancer cell growth control.</p
    • …
    corecore