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Abstract We present a new cosmological model that mim-
ics the Lambda Cold Dark Matter by using a stealth field.
This kind of field is characterized as not coupling directly
to gravity; however, it is connected to the underlying matter
content of the universe model. As is well known, stealth fields
do not back-react on the space-time; however, their mimicry
skills show how this field and its self-interaction potential
determines the cosmic evolution. We show the study of the
simplest model that can be developed with the stealth field.

1 Introduction

Precise astronomical measurements of the universe indicate
that nearly 25% of its content is in the form of dark matter
(DM), the key ingredient necessary to explain large scale
structure formation, and 70% dark energy (DE), the unknown
component driving the recent cosmic acceleration.

In this context, the best model to describe almost all the
observational data is a mixture of elements from the standard
cosmological model plus a cosmological constant, the so-
called “concordance” �CDM model. Although successful
in fitting the observational data, from a theoretical point of
view the model seems too arbitrary. First, there is no clue
about where this cosmological constant came from, and with
it, why its value is so close to the critical energy density,
and second, why we live in a very special epoch where the
contributions from DM and DE are of the same order of
magnitude, the well-known “cosmic coincidence problem”
(CCP).

Physicists have proposed different ways to overcome this
dilemma. The first was to adopt a dynamical cosmologi-
cal constant, trying to adjust the dynamics of it to alleviate
the CCP. This is the idea behind quintessence [1–6], where
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a scalar field is responsible for driving the current cosmic
acceleration. The second was to modify the left-hand side of
Einstein’s equations, trying to explain the presence of a cos-
mological constant as a non-standard geometric effect [7–9].
The third was to violate the Copernican Principle, i.e., by
assuming we live in an inhomogeneous universe [10–15].
Although some success has been obtained in each of these
alternative scenarios, there is so far no clear evidence of a
preference compared to the �CDM model.

Since Einstein’s field equations link the geometric prop-
erties of the universe with its total content, there is a well-
known degeneracy between these two components; DM and
DE. This is in fact one good reason to consider unified dark
models. Of course the simplicity of considering a single com-
ponent acting as both DM and DE is also a good reason.

In this letter, we show that a new class of scalar field mod-
els that exhibit a non-trivial response to geometry, dubbed
stealth, serves as a unified model of the dark sector.

The idea of considering unified scalar field models (see
[16] for a review) to describe DM and DE emerges as a nat-
ural way to alleviate the so-called “coincidence problem”,
namely, to explain why the energy densities of these two
dark components are of the same order of magnitude today.
Models of this type have been proposed in the past, assum-
ing the stress-energy tensor of the scalar field to back-react
to the geometry according to Einstein’s equations. Among
them we can mention the model of [17], where a potential
V (φ) = V0(cosh λφ − 1)p is considered, the Chaplygin gas
[18], the generalized Chaplygin gas model [19], and models
with a non-canonical kinetic term called k-essence models
[20].

On the other hand, it is well-known that in the General
theory of Relativity gravity is understood as a manifestation
of the curvature of space-time and the latter is caused by the
presence of matter. This fundamental principle is codified
in the equations proposed by Einstein. So the slightest pres-
ence of matter on the right-hand side of Einstein’s equations
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is sufficient to alter the geometry of space-time. However,
the stealth is a kind of matter that remains present in the
space-time without altering or changing its geometry. The
stealth appears only for a scalar field non-minimally cou-
pled to gravity, and its origins date back to the improved
energy-momentum tensor considered first in [21], where the
authors showed the possibility of this new tensor becoming
the source of the gravitational field; meanwhile, the dynamic
of the scalar field is dictated by the Klein–Gordon equation.

The original proposal of the stealth was reported for a
three-dimensional BTZ black hole in [22], in higher dimen-
sions in Minkowski space-time [23] and (anti-)de Sitter
[(A)dS] space [25]. Also in Lifshitz space-time in [26], for
a four dimensional black hole [27], for an AdS black hole
in Lovelock gravity [28], in Einstein–Gauss–Bonnet grav-
ity for topological black hole [29], for a rotating AdS black
hole in new massive gravity [30], and finally for a BTZ rotat-
ing black hole present two solutions in [31]. Lately, as was
shown in [32], there were stealth fields during the cosmolog-
ical evolution and some cosmological solutions are given in
order to have a LCDM cosmology, in particular those with
polynomials and power-law evolution are analyzed. Also, the
general solutions for de Sitter cosmologies and inhomoge-
neous stealths have been studied, concluding that only for
de Sitter backgrounds a full dependence on the space-time
coordinates is allowed.

In this letter, we examine the case of a cosmological model
coming from a non-minimal coupling with a stealth scalar
field as a unified component describing both DM and DE,
and thus mimicking the �CDM model.

1.1 Stealths as a unified dark model

In the present work we study a cosmological model com-
ing from a non-minimal coupling with a stealth scalar field,
described by the action:

S =
∫

d4x
√−g

[
R

2κ
+ Lm − 1

2
ζ Rφ2 − 1

2
∂μφ∂μφ − V (φ)

]
.

(1)

Here, Lm is the Lagrangian matter. Clearly, for ζ = 0
the scalar field stress tensor reduces to the usual case of a
minimally coupled field. By varying the action (1), the field
equations are written as

Gμν − κT (m)
μν = κT (S)

μν , (2)

where T (m)
μν is the stress-energy tensor of matter, and T (S)

μν is
the stress-energy tensor of the stealth field φ, given by

T S
μν = ∇μφ∇νφ −

(
V (φ) + 1

2
∇αφ∇αφ

)
gμν

+ ζ(Gμνφ
2 − ∇μ∇νφ

2 + gμν∇α∇αφ2). (3)

It is worth noting that, for ζ �= 0, the variation on gμν

produces the stealth stress tensor T (S)
μν to get a contribution

from the Einstein tensor.
The stealth configuration emerges once we set both sides

of Eq. (2) to zero: the left-hand side is the Einstein equation
for a universe with a matter content described by T (m)

μν , and

the right-hand side is the stealth equations T (S)
μν = 0. Once

a solution to the right side is found, the stealth obeys the
dynamics dictated by the space-time and at the same time it
is invisible to it.

While on the one hand the existence of gravitational
stealth is a fact, and its feature of not having back-reaction
on the gravitational field is of interest, the gravitational
field equations say very little about their interaction with
matter.

There are a few works on this topic; some remarkable
results in that direction are given in [33], where the interaction
between ordinary matter and stealth is shown and [34], where
a relation with the axionic field is shown. Furthermore, it is
possible to show the ability of the stealth fields to mimic any
kind of matter, which is another surprising characteristic of
these fields [35].

As was demonstrated in [24], there is a stealth solution
in the context of a Friedmann–Lemaître–Robertson–Walker
(FLRW) space-time. Now we obtain our cosmological model
by coupling

ds2 = −dt2 + a(t)2
[

dr2

1 − kr2 + r2d
2
]

, (4)

to a perfect fluid with zero pressure, i.e., the dust case, and
when the scalar field depend only on time.

On the left-hand side of (2) we use the stress-energy tensor
for a perfect fluid as the DM contribution, leading to the usual
�CDM model, where the DM densityρ and the cosmological
constant � determine the cosmic evolution a(t). At the same
time, from the right-hand side of (2), the stealth field φ and
its self-interacting potential V (φ) determines completely the
cosmic evolution a(t). As a consequence of this—the evo-
lution must be the same as that of the �CDM model—the
stealth here works as a unifying field simultaneously describ-
ing the effects of the action of both DM and DE. We get

3

(
ȧ

a

)2

+ 3
k

a2 = −6
φ̇

φ

ȧ

a
− 1

2ζ

(
φ̇

φ

)2

− V

ζφ2 , (5)

and

2V

3ζφ2 + 6ζ − 2

3ζ

(
φ̇

φ

)2

+ 2
φ̇

φ

ȧ

a
+ 2

ä

a
+ 2

φ̈

φ
= 0. (6)
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2 Specific stealth realizations

As is well known, the�CDM model is so far the best fit model
for a large set of astronomical observations, such as type
Ia supernovae (SNIa), baryon acoustic oscillations (BAO),
cosmic microwave background radiation (CMBR), growth
of structure, etc. [36]. In this setup the cosmological constant
� drives the current accelerated expansion of the universe,
detected for the first time using type Ia supernovae [37,38].

As we mentioned in the introduction, although the stealth
field does not back-react to the geometry, the existence of a
non-zero coupling ζ enables the stealth to appear dynami-
cally coupled to the matter content. In this section we char-
acterize the stealth field associated with this cosmological
model.

In order to give a complete description of the model we
are presenting, we display the features of the �CDM model.
The Friedmann equation is

H2 + k

a2 = κ

3
ρ + �

3
, (7)

and the stress-energy conservation equation implies

ρ̇ + 3Hρ = 0, (8)

where we have assumed explicitly an equation of state p = 0
for the matter content (cold dark matter). From Eq. (8) we
obtain the energy density, which evolves as ρ = ρ0a−3. This
simple model fits several observational probes quite well. The
best fit parameters so far, assuming a curved FRLW metric,
are those from the Planck Collaboration [39]: 
� = 0.685±
0.018, 
m = 0.315 ± 0.018, and H0 = 67.3 ± 1.2, where

� = �/(3H2

0 ), 
k = −k/H2
0 , and 
m = κρ0/(3H2

0 ).
On the other hand, from the vanishing of the stealth stress-

energy tensor, Eqs. (5) and (6), we can read the equivalence
relations between the set [ρ,�] for the �CDM model, and
the set [φ, V (φ)] for the stealths.

It is easy to show that an equivalence can be met by propos-
ing the following relation:

− V

ζφ2 = �. (9)

This means that the self-interacting potential is related only
algebraically to the cosmological constant. Using this rela-
tion and after some manipulations, the equivalence is com-
plete after we impose

− φ̇

φ

d

dt
ln[φ1/2ζa6] = κρ, (10)

as well as

φ̇

φ
= − c

φβa2 , (11)

where β = (8ζ − 1)/4ζ and c is an integration constant.

What we have obtained here is a stealth field φ—given
by the solution of (11)—with self-interaction (9) that (by
construction) generates an evolution—a(t)—totally indis-
tinguishable from that obtained from the �CDM model.

The equivalence enables us to use cosmological observa-
tions to fix the values (and the uncertainties) of the model
parameters. Using (11) in the equation for ρ we get for the
Hubble function

H = κρ0

6a

φβ

c
+ 1

12ζa2

c

φβ
. (12)

Before testing the model, we have to write it in terms of
the redshift z. Recalling that a = (1 + z)−1, Eq. (11) can be
written as

E(z)ϕδϕ′ = (1 + z)
m

�
, (13)

where E(z) = H(z)/H0, ϕ = φ/φ0, δ = β − 1, and � =
1±√

1 − 
m/6ζ . On the other hand, Eq. (12) can be written
as

E(z) = (1 + z)

2
ϕβ� + (1 + z)2

12ζ


m

ϕβ�
. (14)

The free parameters to constrain are clearly ζ and 
m .
There is no way to constrain H0 based on the sets (13) and
(14). However, if we test the model using H(z) measure-
ments, we can get a number for H0 just by minimizing the
residuals of

[
Hobs(zi ) − H0E(zi |ζ,
m)

]
. (15)

In practice we solve the differential equation (13) numeri-
cally with the initial condition ϕ(z = 0) = 1, and by making
use of (14) to get E(z). Then we compute the residuals. In
the following, we use observational measurements of H(z)
extracted from [40]—consisting of 30 data points—to con-
strain the free parameters in the model.

In addition to the parameters ζ , 
m , and H0, we must also
consider the parameters associated with the stealth potential
V (φ). Given our choice of (9), the potential can be described
by just one parameter that is fixed by relation (9). In fact, by
writing V = V0φ

2, from (9) we find that V0 = −3H2
0 ζ
�.

In this way, it is not necessary to fit it along with the other
three, because it depends on the best fit value of ζ and H0,
and it should be consistent with the known value of 
�.

Along these lines, it is clear that our stealth have more
free parameters than the original �CDM model (the former
has four and the latter three). However, as we just mentioned,
the only free parameters that we can fix using (13) and (14)
are ζ , 
m , and H0. After the fit (assuming the plus sign in
�), we get h = 0.59 ± 0.02, 
m = 0.10 ± 0.05, and ζ =
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Fig. 1 Here we display the confidence level contours, at 1σ and 2σ ,
for the parameters of the model

Fig. 2 We display the theoretical curve together with the data points
for the H(z) measurements obtained from [40]

0.10 ± 0.12. In Fig. 1 we show the 1σ and 2σ C.L. among
the free parameters. In Fig. 2 we display the data points used
to constrain the model along with the best theoretical curve.

The reduced Hubble parameter (h = H0/100) is the most
sensitive parameter in the fit. As we mentioned in the last
paragraph, this parameter essentially controls the amplitude
of the theoretical curve displayed in Fig. 2. By contrast the
parameters 
m and ζ are not very sensitive to changes, so it
was very difficult to find a best fit set based on the H(z) data.
A close study of the system of Eqs. (13) and (14) enables us
to understand this behavior. In fact, the use of observational
data for each value of E(z)—instead of using an analytical
expression for it—renders these two parameters highly cor-
related.

3 Conclusions

In this paper we have shown an example of how the stealth
can operate during the cosmological evolution describing
the �CDM model. This example make use of an explicit
quadratic potential for the stealth, and opens the possibility of
extends this finding using other forms of V (φ). We have also
re-write the stealth equations in a way to find explicitly the
equivalence between the �CDM content—non-relativistic
matter and a cosmological constant—and the stealth field and
its potential. It was through this philosophy—working with
the stealth equivalent of the �CDM—that we have found the
example we studied.

To put our model to the test, considering the special fea-
tures of the current cosmological model, we opt not to use
an ansatz for the scale factor a(t); instead, we make use of
observational data directly to constrain the free parameters
of the stealth.
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What we have shown here is the observationally induced
stealth that best describes the �CDM model. Here, the stealth
field with its self-interacting potential enables us to describe
both the dark matter and the cosmological constant contri-
butions, thus being a unified scalar field model. The best fit
curve—i.e., the function E(z) extracted from (14)—together
with the data is shown in Fig. 2, showing the capacity of the
stealth to describe the observational data directly.

Although by construction the stealth mimics the evolution
of the �CDM model, we have performed a direct test of the
model against observational data, and we have found that in
this case the best fit modifies the value for 
m (instead of the
typical � 0.27, by our value � 0.1) at the expense of fixing
an extra parameter, ζ , which is absent in the �CDM model.

Finally, we would like to emphasize the importance of
understanding the potential role the stealth may play in cos-
mic evolution. As we have shown, although stealth does not
back-react to the space-time, it can describe both dark con-
tributions at once, accounting for almost 95% of the mat-
ter content of the universe. There is no doubt that we must
continue to explore the consequences of the stealth in the
recent cosmic evolution as well as in the early ages of the
universe.
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