7,574 research outputs found
On the Structure of Dark Matter Halos at the Damping Scale of the Power Spectrum with and without Relict Velocities
We report a series of high-resolution cosmological N-body simulations
designed to explore the formation and properties of dark matter halos with
masses close to the damping scale of the primordial power spectrum of density
fluctuations. We further investigate the effect that the addition of a random
component, v_rms, into the particle velocity field has on the structure of
halos. We adopted as a fiducial model the Lambda Warm Dark Matter cosmology
with a non-thermal sterile neutrino mass of 0.5 keV. The filtering mass
corresponds then to M_f = 2.6x10^12 M_sun/h. Halos of masses close to M_f were
simulated with several million of particles. The results show that, on one
hand, the inner density slope of these halos (at radii <~0.02 the virial radius
Rvir) is systematically steeper than the one corresponding to the NFW fit or to
the CDM counterpart. On the other hand, the overall density profile (radii
larger than 0.02Rvir) is less curved and less concentrated than the NFW fit,
with an outer slope shallower than -3. For simulations with v_rms, the inner
halo density profiles flatten significantly at radii smaller than 2-3 kpc/h
(<~0.010-0.015Rvir). A constant density core is not detected in our
simulations, with the exception of one halo for which the flat core radius is
~1 kpc/h. Nevertheless, if ``cored'' density profiles are used to fit the halo
profiles, the inferred core radii are ~0.1-0.8 kpc/h, in rough agreement with
theoretical predictions based on phase-space constrains, and on dynamical
models of warm gravitational collapse. A reduction of v_rms by a factor of 3
produces a modest decrease in core radii, less than a factor of 1.5. We discuss
the extension of our results into several contexts, for example, to the
structure of the cold DM micro-halos at the damping scale of this model.Comment: 13 pages, 6 figures, accepted for publication in The Astrophysical
Journa
A study on the inclusion of forest canopy morphology data in numerical simulations for the purpose of wind resource assessment
A series of numerical simulations of the flow over a forest stand have been conducted using two different turbulence closure models along with various levels of canopy morphology data. Simulations have been validated against Stereoscopic Particle Image Velocimetry measurements from a wind tunnel study using one hundred architectural model trees, the porosities of which have been assessed using a photographic technique.
It has been found that an accurate assessment of the porosity of the canopy, and specifically the variability with height, improves simulation quality regardless of the turbulence closure model used or the level of canopy geometry included. The observed flow field and recovery of the wake is in line with characteristic canopy flows published in the literature and it was found that the shear stress transport turbulence model was best able to capture this detail numerically
Microstructural and magnetic characterization of Fe- and Ir-based multilayers
Nominal [Fe(t)/Ir(t'')](n) (M/Mtype), [FeOx(t)/IrOx(t'')](n) (O/O), and [Fe(t)/IrOx(t'')](n) (M/O) multilayers have been prepared by magnetron sputtering at room temperature. Composition, structure, and magnetic behavior have been analyzed. In the M/M samples, the Fe and Ir phases are identified as bcc and fcc, respectively. The magnetism evolves from bulklike iron to granular behavior as the thickness of the Fe layers decreases. An induced magnetic moment, ferromagnetically coupled to Fe, is observed on Ir by x-ray magnetic circular dichroism (XMCD). Besides, the presence of negative remanent magnetization is observed in the M/M samples. As for the M/O samples, the stronger affinity of iron for oxygen displaces the oxygen atoms giving rise to actual heterostructures that strongly differ from the nominal ones. For similar thickness of the two layers the Fe layer become oxidized while a mixture of metal and oxide phases is found in the Ir layer. The increase of the Fe thickness leads to a metallic Ir layer and a highly coercive (similar to 4.4 kOe) core-shell metal-oxide structure in the Fe layers
Fluid geochemistry of the Los Humeros geothermal field (LHGF - Puebla, Mexico): New constraints for the conceptual model
Geothermal power in Mexico is mainly produced in four geothermal fields operated by the Comision Federal de Electricidad (CFE): Cerro Prieto, Los Azufres, Los Humeros, and Las Tres Virgenes. The Los Humeros Geothermal Field (LHGF) is ranked third in terms of generated capacity, and in the last decade its installed capacity has doubled (up to 95.0 MW). Further increases in the geothermal power generation capacity in Mexico are planned, and thus the LHGF warrants further examination. The development and growth phases of any geothermal project must start from an awareness of the conceptual model of the natural system studied. The recharge mechanism, feeding zones, and fluid flow-path must be identified, along with the estimation of the temperature at the productive level and of phase separation (liquid - steam). To accomplish this, detailed fluid geochemical surveys were carried out in June 2017 and March 2018, in which 57 and 87 samples were collected, respectively, from cold and thermal springs, water wells and maar lakes located around and inside the LHGF. Samples from fumaroles inside the producing area were also collected for the first time, together with fluid from re-injection wells. The presence of a meteoric component, which plays an important role at the regional scale, is confirmed by the chemical and isotope data, and its contribution in terms of recharge may be higher than previously assumed. The Sierra Madre Oriental, on the west side of the LHGF, is characterized by widespread outcrops of limestone belonging to the same geological formation as those at the bottom of the LHGF. The isotope composition (delta D and delta O-18, respectively -77.3 parts per thousand and -10.50 parts per thousand for the hypothetical Infiltration Water IW) is similar to that observed in cold springs located in the Sierra Madre Oriental, and from this the evolution of isotopes in the liquid-rock-steam system during water-rock interaction and phase separation processes can be modelled. Thus, the experimental data obtained for natural gas emissions (fumarolic condensates) and for geothermal fluids can be reproduced. These findings suggest that geothermal fluids in the LHGF are likely to be derived from meteoric water infiltrating (IW) the limestone outcrops of the Sierra Madre Oriental. During their flow-path, the infiltrating waters exchange isotopes at a high temperature with the crustal rocks, which have a much higher O-18/O-16 ratio, resulting in a shift towards higher delta O-18 (-4.35 parts per thousand +/- 1) as the water O exchanges with rock O. The vapor phase can be separated from this deep water (DW) and it is discharged from the fumarolic effluents of Loma Blanca. Single Step Vapor Separation (SSVS) and Continuous Steam Separation processes (CSS) were modelled using stable isotopes of water. The results of geochemical modeling agree with available data for geothermal liquids discharged from several geothermal wells, suggesting that steam separation may be interpreted either as SSVS or CSS. Other processes can affect the chemistry and isotope composition of geothermal fluids (e.g. phase segregation, gas exchange, contributions from magmatic-volcanic deep fluids and re-injection fluids). The proposed conceptual model is consistent with both the geochemical data and the geological setting, and provides a useful point of reference for examining the fluid flow-path and geochemical processes active in the LHGF, at least at a general level.An involvement of magmatic-volcanic deep fluids in the feeding mechanism of the geothermal system cannot be excluded at priori, but the regional meteoric end-member is supported by the data and it seems the most important component
Characterisation of cross-flow above a railway bridge equipped with solid windbreaks
The flow field above a two dimensional model of a railway bridge equipped with solid windbreaks is analysed in a wind tunnel. Particle image velocimetry (PIV) is used to measure the flow velocity in planes perpendicular to the bridge span. The mean velocity components, the two-component turbulent kinetic energy, the turbulence intensities of the velocity fluctuation components and the Reynolds shear stress above the bridge deck are presented. The flow patterns based on the streamlines of the average flow field are analysed. The inclusion of a windbreak produces a separation bubble, that is locked to the bridge deck due to presence of the leeward fence. Special attention is paid to the analysis of the flow field characteristics along the vertical profiles above the railway tracks. The inclusion of the windbreak leads both to an increase of the mean velocity and the turbulence intensity around the catenary contact wires. On the other hand, the flow in the region close to the bridge deck is slowed-down. The effect of the size of the final interrogation window used in the PIV analysis is considered, more particularly on the determination of the mean velocity and turbulence intensity. The results show that a decrease of the final interrogation window leads to an increase of the turbulence intensity when there are no wind protection devices installed on the bridge
Specific interaction of methionine adenosyltransferase with free radicals
Although free radicals have been traditionally implicated in cell injury, and associated to pathophysiological processes, recent data implicate them in cell signaling events. Free radicals are naturally occurring oxygen-,nitrogen-and sulfur-derived species with an unpaired electron, such as superoxide, hydroxyl radical or nitric oxide. In order to assess the role of free radicals in cell signaling, we have studies the modulator effect of oxygen and nitrogen active species on liver methionine adenosyltransferase (MAT), a key metabolic enzyme. The presence of 10 cysteine residues per subunit, makes liver MAT a sensitive target for oxidation/nitrosylation. Here we show that purified MAT from rat liver is nitrosylated and oxidized in vitro. Incubation with H202 or the NO donor S-nitrosylated GSH (GSNO), diminish MAT activity in a dose-and time-dependent manner. Furthermore, the inactivation derived from both oxidation and nitrosylation, was reverted by GSH. MAT inactivation originates on the specific and covalent modification of the sulphydryl group of cysteine residue 121. We also studied how free radicals modulate MAT activity in vivo. It was previously shown that MAT activity is strongly dependent on cellular GSH levels. Generation of oxygen and nitrogen active species in rats by injection of LPS, induced a decrease of liver MAT activity. This effect might derive from nitrosylation and/or oxidation of the enzyme. Modulation of liver MAT by NO is further supported by the inactivation of this enzyme observed in experimental models in which NO is produced; such as the administration of NO donors to rats and in hepatocytes cultured in hypoxia, a condition that induces the expression of the inducible nitric oxide synthase (iNOS). Oxidation also controls liver MAT activity in a cell environment as shown in CHO cells stably transfected with rat liver MAT cDNA upon addition of H2O2 to the culture medium. This effect depends upon the generation of the hydroxyl radical. On the basis of the metabolic implications of liver MAT, together with the structural features accounting for the sensitivity of this enzyme to active oxygen and nitrogen species, we propose that modulation of MAT by these agents could be a mechanism to regulate the consumption of ATP in the liver, and thus preserve cellular viability under different stress conditions
Redox regulation of methylthioadenosine phosphorylase in liver cells: molecular mechanism and functional implications
MTAP (5'-methylthioadenosine phosphorylase) catalyses the reversible phosphorolytic cleavage of methylthioadenosine leading to the production of methylthioribose-1-phosphate and adenine. Deficient MTAP activity has been correlated with human diseases including cirrhosis and hepatocellular carcinoma. In the present study we have investigated the regulation of MTAP by ROS (reactive oxygen species). The results of the present study support the inactivation of MTAP in the liver of bacterial LPS (lipopolysaccharide)-challenged mice as well as in HepG2 cells after exposure to t-butyl hydroperoxide. Reversible inactivation of purified MTAP by hydrogen peroxide results from a reduction of V(max) and involves the specific oxidation of Cys(136) and Cys(223) thiols to sulfenic acid that may be further stabilized to sulfenyl amide intermediates. Additionally, we found that Cys(145) and Cys(211) were disulfide bonded upon hydrogen peroxide exposure. However, this modification is not relevant to the mediation of the loss of MTAP activity as assessed by site-directed mutagenesis. Regulation of MTAP by ROS might participate in the redox regulation of the methionine catabolic pathway in the liver. Reduced MTA (5'-deoxy-5'-methylthioadenosine)-degrading activity may compensate for the deficient production of the precursor S-adenosylmethionine, allowing maintenance of intracellular MTA levels that may be critical to ensure cellular adaptation to physiopathological conditions such as inflammation
SSDSS IV MaNGA - Properties of AGN host galaxies
We present here the characterization of the main properties of a sample of 98
AGN host galaxies, both type-II and type-I, in comparison with those of about
2700 non-active galaxies observed by the MaNGA survey. We found that AGN hosts
are morphologically early-type or early-spirals. For a given morphology AGN
hosts are, in average, more massive, more compact, more central peaked and
rather pressurethan rotational-supported systems. We confirm previous results
indicating that AGN hosts are located in the intermediate/transition region
between star-forming and non-star-forming galaxies (i.e., the so-called green
valley), both in the ColorMagnitude and the star formation main sequence
diagrams. Taking into account their relative distribution in terms of the
stellar metallicity and oxygen gas abundance and a rough estimation of their
molecular gas content, we consider that these galaxies are in the process of
halting/quenching the star formation, in an actual transition between both
groups. The analysis of the radial distributions of the starformation rate,
specific star-formation rate, and molecular gas density shows that the
quenching happens from inside-out involving both a decrease of the efficiency
of the star formation and a deficit of molecular gas. All the intermediate
data-products used to derive the results of our analysis are distributed in a
database including the spatial distribution and average properties of the
stellar populations and ionized gas, published as a Sloan Digital Sky Survey
Value Added Catalog being part of the 14th Data Release:
http://www.sdss.org/dr14/manga/manga-data/manga-pipe3d-value-added-catalog/Comment: 48 pages, 14 figures, in press in RMxA
- …