5 research outputs found

    Extreme Universe Space Observatory on a Super Pressure Balloon 1 calibration: from the laboratory to the desert

    Get PDF
    International audienceThe Extreme Universe Space Observatory on a Super Pressure Balloon 1 (EUSO-SPB1) instrument was launched out of Wanaka, New Zealand, by NASA in April, 2017 as a mission of opportunity. The detector was developed as part of the Joint Experimental Missions for the Extreme Universe Space Observatory (JEM-EUSO) program toward a space-based ultra-high energy cosmic ray (UHECR) telescope with the main objective to make the first observation of UHECRs via the fluorescence technique from suborbital space. The EUSO-SPB1 instrument is a refractive telescope consisting of two 1m2^{2} Fresnel lenses with a high-speed UV camera at the focal plane. The camera has 2304 individual pixels capable of single photoelectron counting with a time resolution of 2.5μ s. A detailed performance study including calibration was done on ground. We separately evaluated the properties of the Photo Detector Module (PDM) and the optical system in the laboratory. An end-to-end test of the instrument was performed during a field campaign in the West Desert in Utah, USA at the Telescope Array (TA) site in September 2016. The campaign lasted for 8 nights. In this article we present the results of the preflight laboratory and field tests. Based on the tests performed in the field, it was determined that EUSO-SPB1 has a field of view of 11.1^{∘} and an absolute photo-detection efficiency of 10%. We also measured the light flux necessary to obtain a 50% trigger efficiency using laser beams. These measurements were crucial for us to perform an accurate post flight event rate calculation to validate our cosmic ray search. Laser beams were also used to estimated the reconstruction angular resolution. Finally, we performed a flat field measurement in flight configuration at the launch site prior to the launch providing a uniformity of the focal surface better than 6%

    EUSO-SPB1 mission and science

    No full text
    International audienceThe Extreme Universe Space Observatory on a Super Pressure Balloon 1 (EUSO-SPB1) was launched in 2017 April from Wanaka, New Zealand. The plan of this mission of opportunity on a NASA super pressure balloon test flight was to circle the southern hemisphere. The primary scientific goal was to make the first observations of ultra-high-energy cosmic-ray extensive air showers (EASs) by looking down on the atmosphere with an ultraviolet (UV) fluorescence telescope from suborbital altitude (33 km). After 12 days and 4 h aloft, the flight was terminated prematurely in the Pacific Ocean. Before the flight, the instrument was tested extensively in the West Desert of Utah, USA, with UV point sources and lasers. The test results indicated that the instrument had sensitivity to EASs of ⪆3 EeV. Simulations of the telescope system, telescope on time, and realized flight trajectory predicted an observation of about 1 event assuming clear sky conditions. The effects of high clouds were estimated to reduce this value by approximately a factor of 2. A manual search and a machine-learning-based search did not find any EAS signals in these data. Here we review the EUSO-SPB1 instrument and flight and the EAS search

    EUSO-TA – First results from a ground-based EUSO telescope

    Get PDF
    International audienceEUSO-TA is a ground-based telescope, installed at the Telescope Array (TA) site in Black Rock Mesa, Utah, USA. This is the first detector to successfully use a Fresnel lens based optical system and multi-anode photomultipliers (64 channels per tube, 2304 channels encompassing a 10.6° × 10.6° field of view) for detection of Ultra High Energy Cosmic Rays (UHECR). The telescope is located in front of one of the fluorescence detectors of the TA experiment. Since its installation in 2013, the detector has observed several ultra-high energy cosmic ray events and, in addition, meteors. The limiting magnitude of 5.5 on summed frames ( ∼ 3 ms) has been established. Measurements of the UV night sky emission in different conditions and moon phases and positions have been completed. The performed observations serve as a proof of concept for the future application of this detector technology

    Ultra-violet imaging of the night-time earth by EUSO-Balloon towards space-based ultra-high energy cosmic ray observations

    Get PDF
    International audienceThe JEM-EUSO (Joint Experiment Missions for the Extreme Universe Space Observatory) program aims at developing Ultra-Violet (UV) fluorescence telescopes for efficient detections of Extensive Air Showers (EASs) induced by Ultra-High Energy Cosmic Rays (UHECRs) from satellite orbit. In order to demonstrate key technologies for JEM-EUSO, we constructed the EUSO-Balloon instrument that consists of a ∼1 m 2 refractive telescope with two Fresnel lenses and an array of multi-anode photo-multiplier tubes at the focus. Distinguishing it from the former balloon-borne experiments, EUSO-Balloon has the capabilities of single photon counting with a gate time of 2.3 µs and of imaging with a total of 2304 pixels. As a pathfinder mission, the instrument was launched for an 8 h stratospheric flight on a moonless night in August 2014 over Timmins, Canada. In this work, we analyze the count rates over ∼2.5 h intervals. The measurements are of diffuse light, e.g. of airglow emission, back-scattered from the Earth’s atmosphere as well as artificial light sources. Count rates from such diffuse light are a background for EAS detections in future missions and relevant factor for the analysis of EAS events. We also obtain the geographical distribution of the count rates over a ∼780 km 2 area along the balloon trajectory. In developed areas, light sources such as the airport, mines, and factories are clearly identified. This demonstrates the correct location of signals that will be required for the EAS analysis in future missions. Although a precise determination of count rates is relevant for the existing instruments, the absolute intensity of diffuse light is deduced for the limited conditions by assuming spectra models and considering simulations of the instrument response. Based on the study of diffuse light by EUSO-Balloon, we also discuss the implications for coming pathfinders and future space-based UHECR observation missions

    First observations of speed of light tracks by a fluorescence detector looking down on the atmosphere

    No full text
    corecore