40 research outputs found

    Antiveneno de serpiente coral producido en gallinas (Gallus domesticus)

    Get PDF
    The production of anti-snake venom from large mammal's blood has been found to be low-yielding and arduous, consequently, antivenom immunoglobulins for treatment are achieved regularly as polyvalent serum. We have standardized an undemanding technique for making purified immunoglobulin IgY antivenom consisting of polyclonal antibodies against coral snake venom in the egg yolk of immunized hens. We have adapted a reported process of antibody purification from egg yolks, and achieved 90% antibody purity. The customized technique consisted of the removal of lipids from distilled water-diluted egg yolks by a freeze–thaw sequence. The specific immunoglobulins were present in the egg yolk for up to 180 days postimmunization. Therefore, by means of small venom quantities, a significant amount of immunoglobulins were found in an adequately purified state (The obtained material contained about 90% pure IgY). The antigen binding of the immunoglobulins was detected by a double immunodiffusion test. Titers of antibodies in the yolk were estimated with a serum protection assay (Median effective dose = ED50) (ED50= 477 mg/kg). Given that breeding hens is economically feasible, egg gathering is noninvasive and the purification of IgY antibodies is quick and easy, chicken immunization is an excellent alternative for the production of polyclonal antibodies. To the best of our knowledge, this is the first coral snake antivenom prepared in birds.La producción de antiveneno de serpiente usando sangre de grandes mamíferos se ha encontrado que es de bajo rendimiento y de trabajo arduo, en consecuencia, las inmunoglobulinas antiveneno para el tratamiento se obtienen generalmente, como suero polivalente. Hemos estandarizado una técnica poco exigente para la fabricación de inmunoglobulina purificada IgY, que consistió en generar anticuerpos policlonales contra el veneno de la serpiente coral en huevos de gallinas inmunizadas. La técnica consistió en la eliminación de lípidos de las yemas del huevo, diluidas en agua y en una secuencia de congelación-descongelación. Las inmunoglobulinas específicas estuvieron presentes en la yema de huevo hasta 180 días después de la inmunización. La unión del antígeno a las inmunoglobulinas se detectó mediante un ensayo de inmunodifusión doble. Los títulos de anticuerpos en la yema fueron estimados con un ensayo de protección (dosis efectiva media = ED50). Dado que las gallinas reproductoras son económicamente viables, la recolección de huevos es no invasiva y la purificación de anticuerpos IgY es rápida y fácil, la inmunización de la gallina es una excelente alternativa para la producción de anticuerpos policlonales. A nuestro entender, esta es el primer anti-veneno contra serpiente de coral preparado en aves

    Crotalus scutulatus scutulatus Crude Venom and Its Purified Cysteine-Rich Secretory Protein (Css-CRiSP)

    Get PDF
    Increased vascular permeability is a frequent outcome of viperid snakebite envenomation, leading to local and systemic complications. We reported that snake venom cysteine-rich secretory proteins (svCRiSPs) from North American pit vipers increase vascular permeability both in vitro and in vivo. They also induce acute activation of several adhesion and signaling molecules that may play a critical role in the pathophysiology of snakebites. Extracellular vesicles (EVs) have gained interest for their diverse functions in intercellular communication, regulating cellular processes, blood-endothelium interactions, vascular permeability, and immune modulation. They also hold potential as valuable biomarkers for diagnosing, predicting, and monitoring therapeutic responses in different diseases. This study aimed to identify proteins in peritoneal exudate and plasma EVs isolated from BALB/c mice following a 30 min post-injection of Crotalus scutulatus scutulatus venom and its purified CRiSP (Css-CRiSP). EVs were isolated from these biofluids using the EVtrap method. Proteomic analysis of exudate- and plasma-derived EVs was performed using LC-MS/MS. We observed significant upregulation or downregulation of proteins involved in cell adhesion, cytoskeleton rearrangement, signal transduction, immune responses, and vesicle-mediated transports. These findings suggest that svCRiSPs play a crucial role in the acute effects of venom and contribute to the local and systemic toxicity of snakebites

    Proteomic Profiling of Extracellular Vesicles Isolated from Plasma and Peritoneal Exudate in Mice Induced by Crotalus scutulatus scutulatus Crude Venom and Its Purified Cysteine-Rich Secretory Protein (Css-CRiSP)

    Get PDF
    Increased vascular permeability is a frequent outcome of viperid snakebite envenomation, leading to local and systemic complications. We reported that snake venom cysteine-rich secretory proteins (svCRiSPs) from North American pit vipers increase vascular permeability both in vitro and in vivo. They also induce acute activation of several adhesion and signaling molecules that may play a critical role in the pathophysiology of snakebites. Extracellular vesicles (EVs) have gained interest for their diverse functions in intercellular communication, regulating cellular processes, blood-endothelium interactions, vascular permeability, and immune modulation. They also hold potential as valuable biomarkers for diagnosing, predicting, and monitoring therapeutic responses in different diseases. This study aimed to identify proteins in peritoneal exudate and plasma EVs isolated from BALB/c mice following a 30 min post-injection of Crotalus scutulatus scutulatus venom and its purified CRiSP (Css-CRiSP). EVs were isolated from these biofluids using the EVtrap method. Proteomic analysis of exudate- and plasma-derived EVs was performed using LC-MS/MS. We observed significant upregulation or downregulation of proteins involved in cell adhesion, cytoskeleton rearrangement, signal transduction, immune responses, and vesicle-mediated transports. These findings suggest that svCRiSPs play a crucial role in the acute effects of venom and contribute to the local and systemic toxicity of snakebites. Key Contribution: This study reveals the immediate effects of crotaline CRiSP and crude venom by exploring the proteomic profile of peritoneal exudate- and plasma-derived EVs in mice injected with Css-CRiSP and C. s. scutulatus crude venom. Using the proteomic profile of exudate- and plasma-derived EVs provides a more comprehensive understanding of the pathophysiology of snakebites and allows for more precise targeting of therapeutic interventions. In addition, such profiling could also help identify novel biomarkers useful in predicting symptoms and progression of snakebite complications and facilitating the development of new treatments

    The genetics of venom ontogeny in the eastern diamondback rattlesnake (Crotalus adamanteus)

    No full text
    The same selective forces that give rise to rapid inter- and intraspecific divergence in snake venoms can also favor differences in venoms across life-history stages. Ontogenetic changes in venom composition are well known and widespread in snakes but have not been investigated to the level of unambiguously identifying the specific loci involved. The eastern diamondback rattlesnake was previously shown to undergo an ontogenetic shift in venom composition at sexual maturity, and this shift accounted for more venom variation than geography. To characterize the genetics underlying the ontogenetic venom compositional change in C. adamanteus, we sequenced adult/juvenile pairs of venom-gland transcriptomes from five populations previously shown to have different adult venom compositions. We identified a total of 59 putative toxin transcripts for C. adamanteus, and 12 of these were involved in the ontogenetic change. Three toxins were downregulated, and nine were upregulated in adults relative to juveniles. Adults and juveniles expressed similar total levels of snake-venom metalloproteinases but differed substantially in their featured paralogs, and adults expressed higher levels of Bradykinin-potentiating and C-type natriuretic peptides, nerve growth factor, and specific paralogs of phospholipases A2 and snake venom serine proteinases. Juvenile venom was more toxic to mice, indicating that the expression differences resulted in a phenotypically, and therefore potentially ecologically, significant difference in venom function. We also showed that adult and juvenile venom-gland transcriptomes for a species with known ontogenetic venom variation were equally effective at individually providing a full characterization of the venom genes of a species but that any particular individual was likely to lack several toxins in their transcriptome. A full characterization of a species’ venom-gene complement therefore requires sequencing more than one individual, although the ages of the individuals are unimportant

    CORAL SNAKE ANTIVENOM PRODUCED IN CHICKENS (Gallus domesticus)

    Get PDF
    The production of anti-snake venom from large mammal's blood has been found to be low-yielding and arduous, consequently, antivenom immunoglobulins for treatment are achieved regularly as polyvalent serum. We have standardized an undemanding technique for making purified immunoglobulin IgY antivenom consisting of polyclonal antibodies against coral snake venom in the egg yolk of immunized hens. We have adapted a reported process of antibody purification from egg yolks, and achieved 90% antibody purity. The customized technique consisted of the removal of lipids from distilled water-diluted egg yolks by a freeze–thaw sequence. The specific immunoglobulins were present in the egg yolk for up to 180 days postimmunization. Therefore, by means of small venom quantities, a significant amount of immunoglobulins were found in an adequately purified state (The obtained material contained about 90% pure IgY). The antigen binding of the immunoglobulins was detected by a double immunodiffusion test. Titers of antibodies in the yolk were estimated with a serum protection assay (Median effective dose = ED50) (ED50= 477 mg/kg). Given that breeding hens is economically feasible, egg gathering is noninvasive and the purification of IgY antibodies is quick and easy, chicken immunization is an excellent alternative for the production of polyclonal antibodies. To the best of our knowledge, this is the first coral snake antivenom prepared in birds

    Evaluation of Signaling Pathways Profiling in Human Dermal Endothelial Cells Treated by Snake Venom Cysteine-Rich Secretory Proteins (svCRiSPs) from North American Snakes Using Reverse Phase Protein Array (RPPA)

    No full text
    Cysteine-Rich Secretory Proteins (CRiSPs) are typically found in many snake venoms; however, the role that these toxins play in the pathophysiology of snakebites is still unclear. Herein, we compared the effects of snake venom CRiSPs (svCRiSPs) from the most medically important species of North American snakes on endothelial cell permeability and vascular permeability. We used reverse phase protein array (RPPA) to identify key signaling molecules on human dermal lymphatic (HDLECs) and blood (HDBECs) endothelial cells treated with svCRiSPs. The results showed that Css-CRiSP isolated from Crotalus scutulatus scutulatus and App-CRiSP from Agkistrodon piscivorus piscivorus are the most potent causes of increase vascular and endothelial permeability in comparison with other svCRiSPs used in this study. We examined the protein expression levels and their activated phosphorylation states in HDLECs and HDBECs induced by App-CRiSP and Css-CRiSP using RPPA. Interestingly, both App-CRiSP and Css-CRiSP induced caveolin-1 expression in HDBECs. We also found that stimulating HDBECs with Css-CRiSP and App-CRiSP significantly induced the phosphorylation of mTOR and Src, respectively. In HDLECs, Css-CRiSP significantly downregulated the expression of N-Cadherin and phospholipase C-gamma, while App-CRiSP significantly enhanced Akt and JNK phosphorylation. These results suggest that the increased endothelial permeability in HDLECs and HDBECs by Css-CRiSP and App-CRiSP may occur through different pathways

    Therapeutic potential of snake venom: Toxin distribution and opportunities in deep learning for novel drug discovery

    Get PDF
    Snake venom is a rich source of bioactive molecules that hold great promise for therapeutic applications. These molecules can be broadly classified into enzymes and non-enzymes, each showcasing unique medicinal properties. Noteworthy compounds such as Bradykinin Potentiating Peptides (BPP) and Three-Finger Toxins (3FTx) are showing therapeutic potential in areas like cardiovascular diseases (CVDs) and pain-relief. Meanwhile, components like snake venom metalloproteinases (SVMP), L-amino acid oxidases (LAAO), and Phospholipase A2s (PLA2) are paving new ways in oncology treatments. The full medicinal scope of these toxins is still emerging. In this review, we discuss drugs derived from snake venoms that address CVDs, cancer, diabetes, strokes, and pain. Further, we outline the toxin distribution across 130 snake species, categorized by their genus within the Crotalidae, Viperidae, and Elapidae families. Conclusively, we spotlight the potential of Deep Learning (DL) in discovering groundbreaking drug prospects from these toxins

    Repeatmasker annotation tables

    No full text
    These are tab-delimited text files containing the RepeatMasker annotation tables. These tables have been cleaned to remove parentheses from the strand information
    corecore