17 research outputs found

    Different control conditions can produce different effect estimates in psychotherapy trials for depression

    Get PDF
    OBJECTIVES: Control conditions' influence on effect estimates of active psychotherapeutic interventions for depression has not been fully elucidated. We used network meta-analysis to estimate the differences between control conditions. STUDY DESIGN AND SETTING: We have conducted a comprehensive literature search of randomized trials of psychotherapies for adults with depression up to January 1, 2019 in four major databases (PubMed, PsycINFO, Embase, and Cochrane). The network meta-analysis included broadly conceived cognitive behavior therapies in comparison with the following control conditions: Waiting List (WL), No Treatment (NT), Pill Placebo (PillPlacebo), Psychological Placebo (PsycholPlacebo). RESULTS: 123 studies with 12,596 participants were included. The I-squared was 55.9% (95% CI: 45.9%; to 64.0%) (moderate heterogeneity). The design-by-treatment global test of inconsistency was not significant (P = 0.44). Different control conditions led to different estimates of efficacy for the same intervention. WL appears to be the weakest control (odds ratio of response against NT = 1.93 (1.30 to 2.86), PsycholPlacebo = 2.03 (1.21 to 3.39), and PillPlacebo = 2.66 (1.45 to 4.89), respectively). CONCLUSIONS: Different control conditions produce different effect estimates in psychotherapy randomized controlled trials for depression. WL was the weakest, followed by NT, PsycholPlacebo, and PillPlacebo in this order. When conducting meta-analyses of psychotherapy trials, different control conditions should not be lumped into a single group

    Carotenoid composition and carotenogenic gene expression during Ipomoea petal development

    Get PDF
    Japanese morning glory (Ipomoea nil) is a representative plant lacking a yellow-flowered cultivar, although a few wild Ipomoea species contain carotenoids in their petals such as Ipomoea sp. (yellow petals) and I. obscura (pale-yellow petals). In the present study, carotenoid composition and the expression patterns of carotenogenic genes during petal development were compared among I. nil, I. obscura, and Ipomoea sp. to identify the factors regulating carotenoid accumulation in Ipomoea plant petals. In the early stage, the carotenoid composition in petals of all the Ipomoea plants tested was the same as in the leaves mainly showing lutein, violaxanthin, and β-carotene (chloroplast-type carotenoids). However, in fully opened flowers, chloroplast-type carotenoids were entirely absent in I. nil, whereas they were present in trace amounts in the free form in I. obscura. At the late stage of petal development in Ipomoea sp., the majority of carotenoids were β-cryptoxanthin, zeaxanthin, and β-carotene (chromoplast-type carotenoids). In addition, most of them were present in the esterified form. Carotenogenic gene expression was notably lower in I. nil than in Ipomoea sp. In particular, β-ring hydroxylase (CHYB) was considerably suppressed in petals of both I. nil and I. obscura. The CHYB expression was found to be significantly high in the petals of Ipomoea sp. during the synthesis of chromoplast-type carotenoids. The expression levels of carotenoid cleavage genes (CCD1 and CCD4) were not correlated with the amount of carotenoids in petals. These results suggest that both I. obscura and I. nil lack the ability to synthesize chromoplast-type carotenoids because of the transcriptional down-regulation of carotenogenic genes. CHYB, an enzyme that catalyses the addition of a hydroxyl residue required for esterification, was found to be a key enzyme for the accumulation of chromoplast-type carotenoids in petals

    Translating the BDI and BDI-II into the HAMD and vice versa with equipercentile linking

    Get PDF
    Abstract Aims The Hamilton Depression Rating Scale (HAMD) and the Beck Depression Inventory (BDI) are the most frequently used observer-rated and self-report scales of depression, respectively. It is important to know what a given total score or a change score from baseline on one scale means in relation to the other scale. Methods We obtained individual participant data from the randomised controlled trials of psychological and pharmacological treatments for major depressive disorders. We then identified corresponding scores of the HAMD and the BDI (369 patients from seven trials) or the BDI-II (683 patients from another seven trials) using the equipercentile linking method. Results The HAMD total scores of 10, 20 and 30 corresponded approximately with the BDI scores of 10, 27 and 42 or with the BDI-II scores of 13, 32 and 50. The HAMD change scores of −20 and −10 with the BDI of −29 and −15 and with the BDI-II of −35 and −16. Conclusions The results can help clinicians interpret the HAMD or BDI scores of their patients in a more versatile manner and also help clinicians and researchers evaluate such scores reported in the literature or the database, when scores on only one of these scales are provided. We present a conversion table for future research

    Exome sequencing of senescence-accelerated mice (SAM) reveals deleterious mutations in degenerative disease-causing genes

    Get PDF
    Background: Senescence-accelerated mice (SAM) are a series of mouse strains originally derived from unexpected crosses between AKR/J and unknown mice, from which phenotypically distinct senescence-prone (SAMP) and -resistant (SAMR) inbred strains were subsequently established. Although SAMP strains have been widely used for aging research focusing on their short life spans and various age-related phenotypes, such as immune dysfunction, osteoporosis, and brain atrophy, the responsible gene mutations have not yet been fully elucidated. Results: To identify mutations specific to SAMP strains, we performed whole exome sequencing of 6 SAMP and 3 SAMR strains. This analysis revealed 32,019 to 38,925 single-nucleotide variants in the coding region of each SAM strain. We detected Ogg1 p.R304W and Mbd4 p.D129N deleterious mutations in all 6 of the SAMP strains but not in the SAMR or AKR/J strains. Moreover, we extracted 31 SAMP-specific novel deleterious mutations. In all SAMP strains except SAMP8, we detected a p.R473W missense mutation in the Ldb3 gene, which has been associated with myofibrillar myopathy. In 3 SAMP strains (SAMP3, SAMP10, and SAMP11), we identified a p.R167C missense mutation in the Prx gene, in which mutations causing hereditary motor and sensory neuropathy (Dejerine-Sottas syndrome) have been identified. In SAMP6 we detected a p.S540fs frame-shift mutation in the Il4ra gene, a mutation potentially causative of ulcerative colitis and osteoporosis. Conclusions: Our data indicate that different combinations of mutations in disease-causing genes may be responsible for the various phenotypes of SAMP strains.ArticleBMC GENOMICS. 14:248 (2013)journal articl

    A comprehensive validation of very early rule-out strategies for non-ST-segment elevation myocardial infarction in emergency departments:protocol for a multicentre prospective cohort study

    Get PDF
    Introduction: Recent advances in troponin sensitivity enabled early and accurate judgement of ruling-out myocardial infarction, especially non-ST elevation myocardial infarction (NSTEMI) in emergency departments (EDs) with development of various prediction-rules and high-sensitive-troponin-based strategies (hs-troponin). Reliance on clinical impression, however, is still common, and it remains unknown which of these strategies is superior. Therefore, our objective in this prospective cohort study is to comprehensively validate the diagnostic accuracy of clinical impression-based strategies, prediction-rules and hs-troponin-based strategies for ruling-out NSTEMIs. Methods and analysis: In total, 1500 consecutive adult patients with symptoms suggestive of acute coronary syndrome will be prospectively recruited from five EDs in two tertiary-level, two secondary-level community hospitals and one university hospital in Japan. The study has begun in July 2018, and recruitment period will be about 1 year. A board-certified emergency physician will complete standardised case report forms, and independently perform a clinical impression-based risk estimation of NSTEMI. Index strategies to be compared will include the clinical impression-based strategy; prediction rules and hs-troponin-based strategies for the following types of troponin (Roche Elecsys hs-troponin T; Abbott ARCHITECT hs-troponin I; Siemens ADVIA Centaur hs-troponin I; Siemens ADVIA Centaur sensitive-troponin I). The reference standard will be the composite of type 1 MI and cardiac death within 30 days after admission to the ED. Outcome measures will be negative predictive value, sensitivity and effectiveness, defined as the proportion of patients categorised as low risk for NSTEMI. We will also evaluate inter-rater reliability of the clinical impression-based risk estimation. Ethics and dissemination: The study is approved by the Ethics Committees of the Kyoto University Graduate School and Faculty of Medicine and of the five hospitals where we will recruit patients. We will disseminate the study results through conference presentations and peer-reviewed journals

    Carotenoid Cleavage Dioxygenase (CmCCD4a) Contributes to White Color Formation in Chrysanthemum Petals

    No full text
    The white petals of chrysanthemum (Chrysanthemum morifolium Ramat.) are believed to contain a factor that inhibits the accumulation of carotenoids. To find this factor, we performed polymerase chain reaction-Select subtraction screening and obtained a clone expressed differentially in white and yellow petals. The deduced amino acid sequence of the protein (designated CmCCD4a) encoded by the clone was highly homologous to the sequence of carotenoid cleavage dioxygenase. All the white-flowered chrysanthemum cultivars tested showed high levels of CmCCD4a transcript in their petals, whereas most of the yellow-flowered cultivars showed extremely low levels. Expression of CmCCD4a was strictly limited to flower petals and was not detected in other organs, such as the root, stem, or leaf. White petals turned yellow after the RNAi construct of CmCCD4a was introduced. These results indicate that in white petals of chrysanthemums, carotenoids are synthesized but are subsequently degraded into colorless compounds, which results in the white color
    corecore