41 research outputs found

    The shaping and functional consequences of the dosage effect landscape in multiple myeloma

    Get PDF
    Background: Multiple myeloma (MM) is a malignant proliferation of plasma B cells. Based on recurrent aneuploidy such as copy number alterations (CNAs), myeloma is divided into two subtypes with different CNA patterns and patient survival outcomes. How aneuploidy events arise, and whether they contribute to cancer cell evolution are actively studied. The large amount of transcriptomic changes resultant of CNAs (dosage effect) pose big challenges for identifying functional consequences of CNAs in myeloma in terms of specific driver genes and pathways. In this study, we hypothesize that gene-wise dosage effect varies as a result from complex regulatory networks that translate the impact of CNAs to gene expression, and studying this variation can provide insights into functional effects of CNAs. Results: We propose gene-wise dosage effect score and genome-wide karyotype plot as tools to measure and visualize concordant copy number and expression changes across cancer samples. We find that dosage effect in myeloma is widespread yet variable, and it is correlated with gene expression level and CNA frequencies in different chromosomes. Our analysis suggests that despite the enrichment of differentially expressed genes between hyperdiploid MM and non-hyperdiploid MM in the trisomy chromosomes, the chromosomal proportion of dosage sensitive genes is higher in the non-trisomy chromosomes. Dosage-sensitive genes are enriched by genes with protein translation and localization functions, and dosage resistant genes are enriched by apoptosis genes. These results point to future studies on differential dosage sensitivity and resistance of pro- and anti-proliferation pathways and their variation across patients as therapeutic targets and prognosis markers. Conclusions: Our findings support the hypothesis that recurrent CNAs in myeloma are selected by their functional consequences. The novel dosage effect score defined in this work will facilitate integration of copy number and expression data for identifying driver genes in cancer genomics studies. The accompanying R code is available at http://www.canevolve.org/dosageEffect/

    Comprehensive genomic analysis of refractory multiple myeloma reveals a complex mutational landscape associated with drug resistance and novel therapeutic vulnerabilities

    Get PDF
    The outcomes of patients with multiple myeloma (MM) refractory to immunomodulatory agents (IMiDs) and proteasome inhibitors (PIs) remain poor. In this study, we performed whole genome and transcriptome sequencing of 39 heavily pretreated relapsed/refractory MM (RRMM) patients to identify mechanisms of resistance and potential therapeutic targets. We observed a high mutational load and indications of increased genomic instability. Recurrently mutated genes in RRMM, which had not been previously reported or only observed at a lower frequency in newly diagnosed MM, included NRAS, BRAF, TP53, SLC4A7, MLLT4, EWSR1, HCFC2, and COPS3. We found multiple genomic regions with bi-allelic events affecting tumor suppressor genes and demonstrated a significant adverse impact of bi-allelic TP53 alterations on survival. With regard to potentially resistance conferring mutations, recurrently mutated gene networks included genes with relevance for PI and IMiD activity; the latter particularly affecting members of the Cereblon and the COP9 signalosome complex. We observed a major impact of signatures associated with exposure to melphalan or impaired DNA double-strand break homologous recombination repair in RRMM. The latter coincided with mutations in genes associated with PARP inhibitor sensitivity in 49% of RRMM patients; a finding with potential therapeutic implications. In conclusion, this comprehensive genomic characterization revealed a complex mutational and structural landscape in RRMM and highlights potential implications for therapeutic strategies

    Biological and prognostic impact of apobec-induced mutations in the spectrum of plasma cell dyscrasias

    Get PDF
    In multiple myeloma (MM), whole exome sequencing (WES) studies have revealed four mutational signatures: two associated with aberrant activities of APOBEC cytidine deaminases (Signatures #2 and #13) and two clock-like signatures associated with "cancer age" (Signatures #1 and #5). Mutational signatures have not been investigated systematically in larger series, nor in other primary plasma cell dyscrasias such as monoclonal gammopathy of unknown significance (MGUS) or primary plasma cell leukemia (pPCL). Finally, while APOBEC activity has been correlated to increased mutational burden and poor-prognosis MAF/MAFB translocations in MM at diagnosis, this has never been confirmed in multivariate analysis in an independent series. To answer these questions, we mined 1151 MM samples from public WES datasets, including samples from the IA9 public release of the CoMMpass trial. The CoMMpass data were generated as part of the Multiple Myeloma Research Foundation Personalized Medicine Initiatives. We also analyzed 6 MGUS/Smoldering MM as well as 5 previously published pPCLs. Extraction of mutational signatures was performed using the NNMF algorithm as previously described (Alexandrov et al. Nature 2013). NNMF in the whole cohort extracted the known 4 signatures pertaining to distinct mutational processes: the two clock-like processes (signatures #1 and #5) and aberrant APOBEC deaminase activity (signatures #2 and #13). While the clock-like processes were more prominent in the cohort as a whole (median 70%, range 0-100%), the APOBEC showed a heterogeneous contribution, more visible in samples with the highest mutation burden. In fact, the absolute and relative contribution of APOBEC activity to the mutational repertoire correlated with the overall number of mutations (r=0.71, p= < 0.0001). As previously described, APOBEC contribution was significantly enriched among MM patients with t(14;16) and with t(14;20) (p<0.001), but the association between relative APOBEC contribution and mutational load remained significant across all cytogenetic subgroups with the exception of t(11;14). In the MGUS/SMM series, APOBEC contribution was generally low. Conversely, APOBEC activity was preponderant in three out of five pPCL samples, all of them characterized by the t(14;16)( IGH / MAF); in the remaining two pPCL the absolute number of APOBEC mutations was similar to MM. Overall, the APOBEC contribution was characterized by a progressive increment from MGUS/SMM to MM and pPCL. We next went on to investigate the prognostic impact of APOBEC signatures at diagnosis. Patients with APOBEC contribution in the 4th quartile had shorter PFS (2-y PFS 47% vs 66%, p<0.0001) and OS (2-y OS 70% vs 85%, p=0.0033) than patients in quartiles 1-3 (Figure 1a-b). This was independent from the association of APOBEC activity with MAF translocations and higher mutational burden, as shown by multivariate analysis with Cox regression (Figure 1c-d). ISS stage III was the only other variable that retained its independent prognostic value for both PFS and OS. We therefore combined both variables and found that co-occurrence of ISS III and APOBEC 4th quartile identifies a fraction of high-risk patients with 2-y OS of 53.8% (95% CI 36.6%-79%), while their simultaneous absence identifies long term survivors with 2-y OS of 93.3% (95% CI 89.6-97.2%). In this study, we provided a global overview on the contribution of mutational processes in the largest whole exome series of plasma cell dyscrasias investigated to date by NNMF. We propose that cases with high APOBEC activity may represent a novel prognostic subgroup that is transversal to conventional cytogenetic subgroups, advocating for closer integration of next-generation sequencing studies and clinical annotation to confirm this finding in independent series

    A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis

    Get PDF
    Patients with newly diagnosed multiple myeloma (NDMM) with high-risk disease are in need of new treatment strategies to improve the outcomes. Multiple clinical, cytogenetic, or gene expression features have been used to identify high-risk patients, each of which has significant weaknesses. Inclusion of molecular features into risk stratification could resolve the current challenges. In a genome-wide analysis of the largest set of molecular and clinical data established to date from NDMM, as part of the Myeloma Genome Project, we have defined DNA drivers of aggressive clinical behavior. Whole-genome and exome data from 1273 NDMM patients identified genetic factors that contribute significantly to progression free survival (PFS) and overall survival (OS) (cumulative R2 = 18.4% and 25.2%, respectively). Integrating DNA drivers and clinical data into a Cox model using 784 patients with ISS, age, PFS, OS, and genomic data, the model has a cumlative R2 of 34.3% for PFS and 46.5% for OS. A high-risk subgroup was defined by recursive partitioning using either a) bi-allelic TP53 inactivation or b) amplification (≥4 copies) of CKS1B (1q21) on the background of International Staging System III, comprising 6.1% of the population (median PFS = 15.4 months; OS = 20.7 months) that was validated in an independent dataset. Double-Hit patients have a dire prognosis despite modern therapies and should be considered for novel therapeutic approaches

    The KDM3A-KLF2-IRF4 axis maintains myeloma cell survival

    Get PDF
    KDM3A is implicated in tumorigenesis; however, its biological role in multiple myeloma (MM) has not been elucidated. Here we identify KDM3A-KLF2-IRF4 axis dependence in MM. Knockdown of KDM3A is toxic to MM cells in vitro and in vivo. KDM3A maintains expression of KLF2 and IRF4 through H3K9 demethylation, and knockdown of KLF2 triggers apoptosis. Moreover, KLF2 directly activates IRF4 and IRF4 reciprocally upregulates KLF2, forming a positive autoregulatory circuit. The interaction of MM cells with bone marrow milieu mediates survival of MM cells. Importantly, silencing of KDM3A, KLF2 or IRF4 both decreases MM cell adhesion to bone marrow stromal cells and reduces MM cell homing to the bone marrow, in association with decreased ITGB7 expression in MAF-translocated MM cell lines. Our results indicate that the KDM3A-KLF2-IRF4 pathway plays an essential role in MM cell survival and homing to the bone marrow, and therefore represents a therapeutic target
    corecore