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Abstract 

The outcomes of patients with multiple myeloma (MM) refractory to immunomodulatory agents 

(IMiDs) and proteasome inhibitors (PIs) remain poor. We performed whole genome and 

transcriptome sequencing of 39 heavily pretreated relapsed/refractory MM (RRMM) patients to 

identify mechanisms of resistance and potential therapeutic targets. We observed a high mutational 

load and indications of increased genomic instability. Recurrently mutated genes in RRMM, which 

had not been previously reported or only observed at a lower frequency in newly diagnosed MM, 

included NRAS, BRAF, TP53, SLC4A7, MLLT4, EWSR1, HCFC2, and COPS3. We found multiple genomic 

regions with bi-allelic events affecting tumor suppressor genes and demonstrated a significant 

adverse impact of bi-allelic TP53 alterations on survival. With regard to potentially resistance 

conferring mutations, recurrently mutated gene networks included genes with relevance for PI and 

IMiD activity, the latter particularly affecting members of the Cereblon and the COP9 signalosome 

complex. We observed a major impact of signatures associated with exposure to melphalan or 

impaired DNA double-strand break homologous recombination repair in RRMM. The latter coincided 

with mutations in genes associated with PARP inhibitor sensitivity in 49% of RRMM patients, a finding 

with potential therapeutic implications. In conclusion, this comprehensive genomic characterization 

revealed a complex mutational and structural landscape in RRMM and highlights potential 

implications for therapeutic strategies. 
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Introduction 

The introduction of novel therapies such as immunomodulatory agents (IMiDs) and proteasome 

inhibitors (PIs) has improved the outcomes of patients with multiple myeloma (MM) including those 

with relapsed MM (RMM) following second or third lines of therapy.1 However, survival remains 

short if the disease becomes resistant to the major drug classes despite the advent of monoclonal 

antibodies.2, 3 Relapsed/refractory MM (RRMM) therefore represents a patient population of 

particularly high unmet medical need.
4
 Thus, a better understanding of the pathophysiology of 

RRMM is key to improving outcome of these patients. 

In recent years, advances have been made in elucidating the genomic landscape of newly diagnosed 

MM (NDMM). These studies have revealed marked clonal heterogeneity with recurrently mutated 

genes each only affecting a minority of patients.5-7 Clonal evolution over the course of the disease 

caused both by therapeutic interventions and ongoing genetic instability leads to more resistant 

clones in RMM, and finally to RRMM.8-11 Accordingly, RRMM represents, in many respects, a 

fundamentally different biological disease entity. However, in contrast to NDMM, genomic data on 

RRMM is still limited.  

Data from targeted sequencing in RRMM has identified an evolved set of mutated genes with 

enrichment for certain oncogenic drivers such as KRAS, NRAS, and TP53 mutations and the 

development of what are presumed to be resistance-associated mutations.
11

 Mutations conferring 

resistance to PIs and IMiDs have been described in proteasomal subunits and in the IMiD target gene 

Cereblon (CRBN), respectively.11, 12 It is noteworthy that most of these mutations only occur in a 

minority of patients and at low allele frequency.13 Additional mechanisms of resistance may 

therefore be important in RRMM. An unbiased and comprehensive molecular study is therefore 

required to fully dissect the biology underlying RRMM. 

Here, we used whole genome sequencing (WGS) and RNA sequencing (RNA-Seq) to comprehensively 

analyze a highly selected cohort of 39 heavily pretreated RRMM patients with at least double 
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refractory disease, revealing a complex mutational and structural landscape and highlighting 

potential implications for personalized therapeutic strategies. 

Methods 

Patient characteristics 

WGS and RNA-Seq was performed on samples from 39 highly refractory MM patients. Nine of these 

samples have been analyzed and reported before by our group using targeted sequencing.11 The 

median number of prior therapy lines was 5 (2-13), all had relapsed following IMiDs and PIs, and 34 

(87%) had had an autologous transplant. All patients were at least double-refractory, 62% were at 

least triple-refractory, and 38% were quadruple-refractory to IMiDs and PIs (suppl Table S1). In 

addition, 8% were also refractory to anti-CD38 monoclonal antibodies. Median progression-free 

survival (PFS) calculated from the time of sampling was 3.5 months and median overall survival (OS) 

was 7.4 months. Using fluorescence in situ hybridization (FISH)-based methods, 21 (54%) RRMM 

patients harbored high-risk cytogenetic aberrations. Specifically, 16 (41%) had deletion 17p. For 

comparison with NDMM, we further analyzed a WGS data set of 21 NDMM patients. For comparative 

analyses of mutational signatures, we included WGS data of 15 RMM patients with a median of two 

(1-4) prior therapy lines, thus less heavily pretreated than our RRMM cohort. Both additional WGS 

data sets are publicly available and had a median coverage of 40x.14, 15 

Sample acquisition and preparation 

Between March 2014 and October 2017, tumor samples from 39 RRMM patients were collected at 

Heidelberg University Hospital. Written informed consent was obtained prior to sampling in 

accordance with the Declaration of Helsinki. This study was approved by the Institutional Ethics 

Committee. 

CD138+ plasma cells were isolated as described previously.
11

 DNA and RNA were extracted using the 

AllPrep kit (QIAGEN, Hilden, Germany). Saliva, buccal swabs or bone marrow stroma cells obtained 

from cultured CD138- cells were used as germline controls. Saliva was collected in Oragene-Dx tubes 
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and DNA was extracted using prepIT-L2P (DNA Genotek, Ottawa, Canada). DNA from buccal swabs 

was extracted using the blackPREP Swab DNA Kit (Analytik Jena, Jena, Germany). DNA from stroma 

cells was extracted using the QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany). 

Whole genome sequencing 

As described previously,
16

 DNA libraries were prepared following the Illumina TruSeq Nano DNA 

Library protocol using the TruSeq DNA Nano kit (Illumina, Hayward, CA) and then sequenced on two 

lanes on the HiSeq X (2×151 bp) using the HiSeq X Ten Reagent Kit v2.5 (Illumina, Hayward, CA) to a 

median coverage of 77x. 

Alignment and small variant calling 

The raw reads were mapped to the human reference genome (build 37, version hs37d5), using BWA 

mem
17

 (version 0.7.8). To assess the effect of differing sequencing depths between the NDMM 

(median coverage 40x), RMM (40x), and RRMM (77x) samples on variant calling, subsampling of 

RRMM samples was performed for comparative analyses using Sambamba
18

 (version 0.6.6) to 

achieve a 50% lower coverage. 

Small nucleotide variants (SNVs) were called using SAMtools mpileup (version 0.1.19) and bcftools 

view. Indels were called using Platypus19 (version 0.8.1). Variants were annotated with Gencode20 

(version 19) and ANNOVAR21. Splicing SNVs or SNVs resulting in nonsynonymous coding were called 

‘functional SNVs’. For prediction of functional relevance of SNVs, we calculated Combined 

Annotation Dependent Depletion (CADD) scores (version 1.3) and used a cut-off of 20. Driver genes 

were identified using IntOGen22 (version 3.0.5). 

Analysis of mutational signatures and Kataegis clusters 

A supervised analysis of mutational signatures was performed with the R package YAPSA,23 based on 

the mutational catalogue of the 30 known signatures from COSMIC v2 

(https://cancer.sanger.ac.uk/signatures/signatures_v2), supplemented with the MM1 signature 

which was recently linked to melphalan exposure.15, 24 We defined Kataegis-like clusters to be regions 
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of increased SNV density with at least five SNVs with at most 1000 bp inter-mutational distance in 

one sample.25 

Calculation of HRDetect scores 

HRDetect is a weighted model used to predict BRCA1/2 deficient tumors.26 We used an 

implementation of HRDetect available at https://github.com/eyzhao/hrdetect-pipeline.27 

Detection of copy number variation and structural variants 

Copy number states were called as described previously,
16, 25

 and estimation of tumor purity and 

ploidy was performed using ACEseq (allele-specific copy number estimation from sequencing; 

https://www.biorxiv.org/content/early/2017/10/29/210807).  

Structural variants (SVs) were detected using the DKFZ SOPHIA workflow (version 2.0.2, 

https://github.com/DKFZ-ODCF/SophiaWorkflow).16, 25 SV candidate detection is a process of split-

read and discordant mate evidence collection across each breakpoint as precursors for a SV. SV 

candidates (pairs of breakpoints) are filtered by a complex decision tree trained by expert 

assessment of orthogonal FISH data. 

RNA sequencing 

RNA-Seq libraries were prepared using the Illumina TruSeq stranded mRNA kit and were sequenced 

on the Illumina HiSeq 2000 V4 platform. The paired-end reads were mapped to the STAR index 

generated reference genome (build 37, version hs37d5) with gencode (version 19) using STAR28 

(version 2.5.2b). The gene expressions were quantified using featureCounts (Subread version 1.5.1). 

Gene fusions were detected using Arriba version 1.0.0 (https://github.com/suhrig/arriba) as 

described previously.29  

A detailed description of the bioinformatics workflow and subsequent analyses is provided in 

supplemental methods.  
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Results 

High mutational load and genomic instability in RRMM 

RRMM displayed a complex mutational landscape and an increase of both chromosomal and 

nucleotide aberrations compared to NDMM (Figure 1A, suppl. Figure S1). With a median of 67 (range 

7-496), the overall load of SVs was significantly higher in RRMM (p=0.002) (Figure 1B, suppl. Figure 

S1). Complex structural rearrangements and catastrophic events were a frequent finding in RRMM 

patients, notably chromoplexy (n=10) and chromothripsis (n=5) (Figure 1C, D). Numerical 

chromosomal aberrations, which occurred significantly more frequently in RRMM compared to 

NDMM, included gain(1q) and deletions of 1p, 13q, and 17p (all p<0.05, suppl. Figure S1). 

The overall mutational load in RRMM was also significantly higher than in NDMM (p<10
-5

) (Figure 1E, 

suppl. Figure S1). We observed a median number of 116 (range 42-237) functional SNVs and 5 (range 

1-15) functional indels per patient and overall, a median of 3.94 somatic small variants per megabase 

in RRMM. RRMM patients showed a much higher prevalence of SNVs outside of Kataegis-like clusters 

than NDMM patients (p<10
-5

) indicating activity of mutational mechanisms on a broader scale in 

RRMM (suppl. Figure S1).  

Genomic instability, assessed by calculation of the unbiased sum of homologous recombination 

deficiency (HRD), large-scale transition (LST) and telomeric allelic imbalance (TAI) scores, was 

significantly increased in RRMM compared to NDMM (p=0.004, Figure 1F, suppl. Figure S1). 

Driver gene aberrations in RRMM 

Significantly mutated driver genes in RRMM featured prominently members of the mitogen-activated 

kinase pathway and TP53 (Figure 2, suppl. Table S2) and showed large overlap to known drivers in 

NDMM. However, the prevalence of BRAF (p<0.001) and TP53 (p<0.0001) mutations was significantly 

higher in RRMM compared to data from NDMM patients published by Walker et al;7 a trend was also 

seen for NRAS mutations (p=0.05). In addition, we identified the following genes as significantly 

mutated drivers in RRMM: the sodium bicarbonate co-transporter SLC4A7 (13%), the Ras target 
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MLLT4 (5%), the RNA binding protein EWSR1 (5%), the MLL complex member HCFC2 (5%), and the 

COP9 signalosome subunit COPS3 (5%) (Figure 2). RNA Seq data confirmed expression of the vast 

majority of variants. Virtually all variants were predicted to be functionally relevant by CADD score 

(suppl. Figure S2). 

We found multiple bi-allelic events or ‘double hits’ in RRMM affecting known tumor suppressor 

genes (TSGs) (suppl. Table S3). In total, 25 of 39 RRMM patients presented with at least one double 

hit in TSGs, significantly increased compared to NDMM (3/21, p<0.001).  The most frequently 

affected TSGs in RRMM were TP53 (n=8), RB1 (n=7), and TRAF3 (n=6). RRMM patients with a double 

hit of TP53 had significantly inferior PFS (p=0.004) and a trend for inferior OS (p=0.07), both 

calculated from time of sampling, in univariate log-rank tests compared to patients with no or a 

single hit of TP53 (Figure 3). While treatment of patients before and after sampling was 

heterogeneous, the adverse impact of bi-allelic TP53 alterations remained significant in multivariate 

analysis including age, number of prior therapies and ISS as possible confounders with regard to both 

PFS (hazard ratio (HR) 4.02; p=0.01) and OS (HR 4.77; p=0.02). ‘Double hits’ in other single TSGs or a 

combination thereof did not show a significant impact on survival which would have been 

independent of TP53 events.  

Oncogenic networks in RRMM 

Next, we analyzed whether gene groups, resistance mechanisms or signaling networks were 

recurrently affected by small variants in our RRMM cohort (suppl. Table S4). We first addressed 

genes linked to the mechanisms of action of PIs and IMiDs (suppl. Figure S3-5, suppl. Table S5). 

Overall, 21% of RRMM patients as opposed to only 5% of NDMM patients harbored mutations in 

genes considered relevant to PI activity, mainly proteasome subunits (PSMB5, PSMC2, PSMC6, 

PSMD2, PSMD11, and PSME3). Recurrent mutations were also detected in TJP1, previously found to 

modulate PI sensitivity in MM.30 However, statistical significance was not reached (p=0.14), likely due 

to the limited sample size. Regarding IMiD resistance, candidate mutations were found to be 

significantly more frequent in RRMM patients compared to NDMM (31% vs. 5%, p=0.02). We 
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observed mutations in all four members of the CRBN complex (CRBN, CUL4B, RBX1, DDB1), IZKF1 as 

downstream target, as well as in three members of the COP9 signalosome complex (COPS3, COPS4, 

COPS8) and CAND1, which are regulators of cullin-RING ligase neddylation and which were recently 

identified in a CRISPR-Cas9 screen as essential for IMiD mechanism of action.31 

The MAPK pathway harbored mutations in 77% of RRMM patients (52% in NDMM), mostly due to 

mutations in NRAS, KRAS and BRAF. NFKB signaling was affected in 23% (5% in NDMM) with 

recurrent mutations in NFKB1, NFKB2, TRAF3 and CHUK. Both pathways showed a trend to being 

more frequently affected in RRMM, as did the large functional group of epigenetic modifiers which 

was affected in 77% of RRMM patients (52% in NDMM, all p=0.08). Of potential therapeutic interest, 

mutations in genes associated with sensitivity to PARP inhibitors were found in 49% of RRMM 

compared to 29% of NDMM patients, however, not reaching statistical significance (p=0.17), with 

recurrent mutations in ATM, NBN, and TOP3A (suppl. Figure S3, S6, suppl. Table S5).  

Enrichment of mutational signatures of impaired DNA damage repair in RRMM 

To identify mechanisms contributing to high mutational load and high genomic instability observed in 

RRMM as compared to NDMM, we analyzed mutational signatures (Figure 4A, suppl. Figure S7). For 

further evaluation of different disease stages, we also included a cohort of relapsed but less heavily 

pretreated RMM patients as an intermediate stage, which had previously been analyzed by Maura et 

al.
15

 In supervised fitting with signature-specific cutoffs, we found a significantly higher contribution 

from COSMIC signatures AC3 (associated with deficiency in homologous recombination repair) and 

the melphalan signature MM1 (p=0.006 and p<0.001, resp.) in RRMM compared to NDMM (Figure 

4B) at the cost of the clock-like signatures AC1 (spontaneous deamination) and AC5 (clock-like but 

unknown) with significantly lower contributions (p<0.001 and p=0.005, resp.). In RMM, we detected 

signature MM1, but to a lesser extent when compared to our RRMM cohort (p=0.004), and signature 

AC3 was found with exposures in-between the NDMM and RRMM cohorts (Figure 4A, suppl. Figure 

S7). Comparison of the clinical information on the published RMM cohort with our RRMM patients 

confirmed a significantly higher overall number of prior therapies as well as more extensive exposure 
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to both novel agents and to high-dose melphalan therapy in our RRMM patients. Information on all 

mutational signatures detected in this manuscript including asserted mutational mechanisms is 

summarized in suppl. Table S6. 

To further assess the finding of enriched deficiency in homologous recombination repair as indicated 

by signature AC3, we applied HRDetect, which is a weighted model used to predict BRCA1/2 deficient 

tumors.26 HRDetect scores were significantly higher in RRMM than in both NDMM and RMM 

(p<0.0001 and p=0.01, resp., Figure 4C, suppl. Figure S7), in line with the observation of higher 

exposure to mutational signature AC3 in RRMM than in NDMM and RMM. In 6 of 39 RRMM samples, 

the HRDetect scores exceeded the value of 0.7, a cut-off which was recently established to identify 

tumors with a high level of BRCA1/BRCA2 deficiency.
26

 Taken together, these observations indicate a 

shift in the activities of different mutational mechanisms during the course of the disease. This might 

be a consequence of mechanisms intrinsic to the tumor cells (e.g. acquisition of DNA repair 

deficiencies) or may result from exposure to therapeutic agents.  

Enriched chromosomal translocations in RRMM 

Next, we sought to identify translocations, which were enriched or unique to RRMM (Figure 5A, 

suppl. Figure 8). While MYC rearrangements per se were not enriched in RRMM, FAM46C-MYC 

translocations (n=4) and local rearrangements of chr8q24.21 (n=4) were both found exclusively in 

RRMM patients (Figure 5B). The super-enhancer of FAM46C showed rearrangements involving a 

number of target genes such as the transcription factor and presumed oncogene LMO4. Analysis of 

expression data confirmed enhancer hijacking (suppl. Figure S9). IgH translocations involving MYCN 

were observed in two cases as part of composite t(4;14)-t(2;4) translocations also involving the 

MMSET locus, co-activating MMSET and MYCN. In these cases, MYCN was highly expressed, while 

MYC expression was completely suppressed (suppl. Figure S10). Both cases showed extramedullary 

disease, secondary plasma cell leukemia and a distinct plasmablastic cytological appearance. In one 

case, retrospective analysis of earlier samples revealed the absence of the secondary t(2;4) 



13 

 

translocation and absence of concomitant MYCN activation and MYC suppression, suggesting the 

emergence of MYCN overexpression with disease progression.  

Discussion 

This comprehensive study of extensively pretreated, highly refractory MM by WGS and RNA-Seq 

suggests that the pathophysiology of NDMM and the biology of refractory disease are strikingly 

different. In RRMM, we observed marked genomic instability with impaired DNA repair mechanisms, 

in particular homologous recombination repair (HRR), which we confirmed using the well-established 

HRDetect algorithm. Mutational signatures indicative of impaired DNA repair, such as AC3, have been 

reported in NDMM although not to the extent observed here in this highly refractory setting.32, 33 A 

recent study has reported the absence of mutational signature AC3 and HRR deficiency in NDMM 

and has classified the appearance of signature AC3 in NDMM as a false positive effect of the applied 

deconvolution method.15 A study on the genomic make-up of relapsed but less heavily pretreated 

RMM using whole-exome sequencing did not report mutational signature AC3, but rather a novel 

signature associated with alkylator therapies.13 In our work, we find both mutational signatures and 

thereby provide evidence that they are not reflective of the same underlying mutational process and 

can be deconvoluted with sufficient statistical power in the underlying data. 

Walker et al recently used the term double hit MM to indicate a subset of NDMM with a very poor 

prognosis including patients with bi-allelic TP53 inactivation.
34

 In our study, patients with a TP53 

double hit experienced the worst outcomes in RRMM, confirming recent observations in the relapsed 

setting.10, 35 Further genes with recurrent bi-allelic aberrations in RRMM include RB1 and TRAF3, 

though they did not independently affect the prognosis in our cohort, likely attributable to the 

limited number of patients which had ‘double hits’ in these TSGs but without concomitant bi-allelic 

TP53 events.  

BRAF mutations occur at a higher prevalence in RRMM. The frequency seen in our cohort seems to 

even exceed those previously reported in RRMM,36 a finding which may reflect the heavily pretreated 
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nature of the patient cohort presented here. However, a possible selection bias has to be kept in 

mind because a strong driver mutation like BRAF V600E might be associated with higher tumor load, 

thus potentially resulting in a higher success rate of plasma cell purification for WGS. Also, the limited 

sample size might have contributed to this finding. Nonetheless, the eight cases of the druggable 

mutation BRAF V600E are of particular therapeutic interest.37, 38 

Among potential resistance-conferring SNVs, individual genes were only affected at low frequencies. 

However, at the level of functional networks, recurrence was actually seen. We found mutations in 

several proteasomal subunits as well as in TJP1 which modulates PI sensitivity in MM.
12, 30, 39

 While 

the functional impact of most of these mutations remains to be proven, their enrichment in RRMM 

supports an association with PI resistance. The same holds true for mutations in genes presumably 

associated with IMiD resistance, such as CRBN, CUL4B, and IZKF1. Furthermore, we detected 

mutations in three members of the COP9 signalosome complex (COPS3, COPS4, and COPS8) and 

CAND1, further supporting their functional impact on IMiD activity.
31

 

The increased mutational load might both explain the higher capacity of MM cells to adapt to 

treatment and facilitate the emergence of resistance. One of the mechanisms contributing to the 

higher mutational load in RRMM appears to be impaired DNA double-strand break HRR with the 

potential therapeutic implication of synthetic lethality to pharmacological inhibitors of DNA damage 

response, such as ATR inhibitors. At the same time, we found mutations in genes associated with 

sensitivity to PARP inhibitors in 49% of RRMM patients. This further strengthens the rationale for 

assessing the therapeutic efficacy of ATR and PARP inhibition in RRMM as has been shown, for 

example, in solid cancers with BRCAness characteristics.
40

 In fact, there is plenty of pre-clinical 

evidence for synthetic lethality conferred by such inhibitors in MM cell lines with high rates of 

ongoing DNA damage.
41-43

 As PI treatment has been suggested to induce a BRCAness-like state in MM 

cells via impairment of DNA repair pathways,
44

 there may also be a rationale for combining PI and 

PARP inhibitors in MM. However, these concepts need to be confirmed within clinical trials. 
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One major limitation of our study is that comparative analyses were performed between 

independent NDMM, RMM, and RRMM patient cohorts, limiting the ability to draw conclusions as to 

the tumor evolution under treatment. Thus, one can only speculate as to whether genomic instability 

was pre-existing in these cases, e.g. restricted to certain focal lesions,45 and was then selected for or 

whether it was newly acquired following treatment with e.g. DNA damaging drugs. Longitudinal 

analyses that also address spatial heterogeneity will therefore be of particular interest. While this 

real world RRMM cohort represents similarly ultra-refractory MM patients, the route taken to this 

end stage disease differed greatly between individual patients. It is well conceivable, that important 

biological differences exist between RRMM patients reaching refractoriness after multiple lines of 

treatment and those progressing fast through a limited number of therapies. Our RRMM cohort size 

might therefore be too small to overcome the heterogeneity of this patient population with sufficient 

statistical power. Further analyses on larger or more homogeneous RRMM patient cohorts will help 

elucidate these issues. 

In conclusion, based on our observation that RRMM is characterized by marked genomic instability, 

which enables MM cells to rapidly adapt to selective therapeutic pressure, treatment strategies 

focused on exploiting impaired HRR should be evaluated within prospective clinical trials. Such 

strategies might be particularly useful in the current era of novel immunotherapies in MM as recent 

reports suggest genomic instability as a mechanism of resistance to CAR T cell treatment.46, 47 

Targeting impaired DNA repair mechanisms may therefore help to improve the outcomes of patients 

with RRMM. 
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Figure legends 

Figure 1. High genomic complexity and mutational load in RRMM vs NDMM.  

A. SV and SNV load per patient in RRMM vs NDMM.  

SNV and SV counts are plotted for each patient in both cohorts showing a higher overall 

mutational load in RRMM (blue) vs NDMM (red). Each dot represents an individual patient. 

The example cases shown in panels C and D are annotated as RRMM_16 and RRMM_15, 

respectively. 

B. Differences in SV types in RRMM vs NDMM.  

Median and range of number of overall SVs per patient in RRMM (blue) vs NDMM (red) are 

shown as well as deletions (DEL), duplications (DUP), inversions (INV), and translocations 

(TRA).  

C. Example case of RRMM displaying chromoplexy.  

Green lines represent translocations, blue lines deletions, red lines duplications, and black 

lines inversions. Transparency of lines is based on estimated SV clonality. Variant existence is 

represented by bar plots. The outer layer represents copy number variations and display the 

copy-neutral nature of the chromoplexy event. 

D. Example case of RRMM displaying chromothripsis.  

Green lines represent translocations, blue lines deletions, red lines duplications, and black 

lines inversions. Transparency of lines is based on estimated SV clonality. Variant existence is 

represented by bar plots. The outer layer represents copy number variations.  

E. Genome-wide small variant mutational load in RRMM vs NDMM.  

The number of mutations per patients and length of genome in megabases (MB) is shown in 

RRMM (blue) vs NDMM (red).  

F. Genomic instability scores in RRMM vs NDMM.  

The unbiased sum of HRD, LST, and TAI scores is shown for RRMM (blue) vs NDMM (red) 

illustrating a higher genomic instability in RRMM.  
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To compensate for differing sequencing depths in both cohorts, the RRMM dataset was subsampled 

for these analyses. 

Figure 2. Significantly mutated driver genes in RRMM. Significantly mutated drivers and their 

prevalence in the RRMM cohort are shown as well as copy number aberrations (CNAs) of 

chromosome arms 13q, 1q, 17p, 1p, presence or absence of hyperdiploid karyotype, and the 

genomic instability score. 

Figure 3. Impact of TP53 alteration on PFS (A) and OS (B) in RRMM. PFS and OS is shown for RRMM 

patients with a bi-allelic event involving the TP53 locus (red), a mono-allelic event (blue) or no event 

(black) illustrating the inferior outcome of patients with bi-allelic TP53 aberrations. PFS and OS were 

calculated from time of sampling. 

Figure 4. Exposure to mutational signatures in RRMM vs RMM vs NDMM patients.  

A. Absolute exposure to mutational signatures in RRMM vs RMM vs NDMM patients.  

Exposure to mutational signatures based on the Alexandrov COSMIC (AC) catalogue with the 

addition of the MM1 signature recently linked to melphalan exposure is shown for RRMM 

(blue) vs RMM (green) vs NDMM (red) patients. Most notable is an increased impact of 

signatures AC3 (light brown) and MM1 (black) in RRMM.  

B. Relative exposure to mutational signatures in RRMM vs RMM vs NDMM patients.  

Exposure to mutational signatures is shown for RRMM (blue) vs RMM (green) vs NDMM (red) 

patient cohorts. Significant differences in exposure are indicated with the following p-values: 

* <0.05, ** <0.01, *** < 0.001. Most notable is a significant increase of signature AC3 in 

RRMM compared to NDMM and RMM as well as a significant step-wise increase of signature 

MM1 in RRMM vs RMM vs NDMM. 

C. HRDetect scores in RRMM vs RMM vs NDMM patients. 

HRDetect scores in RRMM (blue) vs RMM (green) vs NDMM (red) indicate a significant 

increase in impaired homologous recombination repair features in RRMM. 
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To compensate for differing sequencing depths in both cohorts, the RRMM dataset was subsampled 

for this analysis. 

Figure 5. Immunoglobulin translocations and MYC rearrangements in RRMM.  

A. Immunoglobulin translocations in RRMM.  

Translocations involving the immunoglobulin heavy chain (IGH) locus, the lambda light chain 

(IGL), and the kappa light chain (IGK) locus are shown. The number of patients with 

involvement of the respective partner genes are given in brackets. Patient RRMM_34 

harboring a very complex IGL translocation was excluded from this graph for reasons of 

readability and is shown separately in suppl. Figure S8. Cytobands, chromosome arms and 

chromosomes were also stretched and compressed to emphasize targets of immunoglobulin 

translocations and to improve readability. 

B. MYC rearrangements in RRMM.  

Most notable are local rearrangements as well as those involving the IGL locus or FAM46C. 

Orange lines represent immunoglobulin locus translocations, purple lines secondary immunoglobulin 

locus related translocations. Secondary translocations of the immunoglobulin loci were defined as 

secondary events with one of the breakpoints of the SV not further away than 2MB from the target 

breakpoint of a given primary immunoglobulin translocation (i.e. IG —PrimarySV—> PrimaryTarget 

—SecondarySV—>SecondaryTarget). Green lines indicate non-IG locus translocations, blue lines 

deletions, red lines duplications, and black lines inversions. 
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Supplementary Information 

Supplementary Methods 

Alignment of RRMM and NDMM 

The raw reads were mapped to the human reference genome (build 37, version hs37d5), using BWA 

mem1 (version 0.7.8, with parameter -T 0). A Phi X 174 contig (NC_001422.1) was added to the 

reference genome to remove the Phi X spike-in used during the sequencing. The mapped reads were 

sorted using SAMtools2 (version 0.1.19), and lanes were merged and duplicate reads were marked 

using Sambamba3 (version 0.5.9, with parameter -t 6 -l 9 --hash-table-size=2000000 --overflow-list-

size=1000000 --io-buffer-size=64). Similar alignment workflow and parameters were applied to the 

raw reads from NDMM samples except that the BWA and Sambamba version were updated to 0.7.15 

and 0.6.5 respectively.  

To assess the effect of differing sequencing depths between the NDMM, RMM and RRMM samples on 

variant calling, subsampling of RRMM samples was performed using Sambamba (version 0.6.6, with 

parameters view -h -t 20 -s 0.5 -f bam --subsampling-seed=42) to achieve a 50% lower coverage which 

was comparable to the coverage of the set of NDMM (suppl. Figure S1, S2). 

Small variant calling 

SNVs and indels were called using in-house pipelines developed for the ICGC Pan-Cancer Analysis of 

Whole Genomes (PCAWG) project.4 Briefly, SNVs were called in tumor samples using SAMtools 

mpileup (version 0.1.19, with parameters -REI -q 30 -ug) and bcftools view (with parameters -vcgN -p 

2.0). We have disabled the Bayesian model in bcftools (by setting -p 2.0), which allows calling low 

variant allele frequency (VAF) variants. In the next step each of these variant positions were queried 

in the control sample using SAMtools mpileup (with parameters -ABRI -Q 0 -q 1). Variants were further 

annotated with Gencode5 (version 19) and ANNOVAR6; 1000 genome variants, dbSNP variants and 

variant frequency from our local control were further annotated. Somatic variant classification and 
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confidence scores (with range 1 to 10) were added as described previously,7 and variants with a score 

of 8 and above were considered as high confidence variants.  

Indels were called together in control and tumor samples using Platypus8 (version 0.8.1, with 

parameters -bufferSize = 100,000 -maxReads = 5,000,000) and gene definitions and databases were 

annotated similar to SNVs. As described previously,9 somatic SNVs and indels present in ten or more 

samples in our local control database consisting of 280 WGS control samples from different cohorts, 

which were processed using the same pipelines, were considered as technical artifacts and were 

removed. 

Further Combined Annotation Dependent Depletion (CADD) scores (version 1.3) were added to the 

variants. 

Somatic small variants misclassified as germline variant due to contamination of normal control 

samples with tumor cell DNA were rescued using our in-house tool TiNDA, which uses the EM-

algorithm implemented in Canopy10 (version 1.2.0) to cluster variants based on VAFs. Clusters in which 

at least 85% of variants have a higher VAF in tumor compared to control and 85% of the variants have 

VAF below 0.45 in control and above 0.01 in tumor were considered as somatic clusters. Rescued 

variants with high confidence scores were merged with the remaining high confidence somatic 

variants. 

Significance of subgroup differences (NDMM vs. RRMM) regarding mutational load were assessed by 

the Wilcoxon rank sum test. 

The merged set of variants was used to identify driver genes using IntOGen11 (version 3.0.5) with the  

parameters: --split-size 5000; with configuration: 'significance_threshold' as 0.1 for oncodrivefm, 

oncodriveclust and mutsig, 'samples_threshold' as 2 and 5 for oncodrivefm and oncodriveclst 

respectively. The identified driver genes were used to generate the oncoprint using 

ComplexHeatmap12. Significance of subgroup differences (NDMM vs. RRMM) regarding prevalences of 

gene mutations were assessed by Fisher’s exact test. 
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Supervised analysis of mutational signatures 

A supervised analysis of mutational signatures was performed with the R package YAPSA.13 The 

function LCD_complex_cutoff() in YAPSA was used to compute a non-negative least square (NNLS) 

decomposition of the mutational catalogue with the 30 known signatures from COSMIC v2 

(https://cancer.sanger.ac.uk/signatures/signatures_v2/). To unambiguously identify the used 

signature set we denominate these signatures as AC1–AC30 (as abbreviation for Alexandrov COSMIC). 

The MM1 signature which was recently linked to melphalan exposure was added.14, 15 After a first NNLS 

decomposition, the computed exposures are compared to optimal signature-specific cutoffs in order 

to reduce false positive calls, and then only those signatures whose exposures are higher than these 

signature-specific cutoffs are kept for the analysis and fed into a second NNLS decomposition yielding 

the final exposures. YAPSA was also used for stratified analysis of mutational signatures in order to 

identify enrichment and depletion patterns. Breakpoint proximity was used as stratification axis with 

three strata: vicinity (distance to closest breakpoint < 100 kbp), intermediate (distance to closest 

breakpoint between 100 kbp and 1 Mbp), and background (distance to closest breakpoint > 1 Mbp). 

Significance of enrichment and depletion patterns as well as of subgroup differences (NDMM vs. 

RRMM) were assessed by the Kruskal Wallis test and if that revealed significance in more than two 

groups, Nemenyi tests were performed as post-hoc tests. 

Identification of Kataegis clusters 

As outlined previously,16 we defined Kataegis-like clusters to be regions of increased SNV density with 

at least five SNVs with at most 1000 bp intermutational distance in one sample, similar to what has 

previously been defined as Kataegis.17 We defined a Kataegis cluster to be recurrent if it was found in 

at least three samples, i.e., if in three samples Kataegis clusters were identified with a minimal region 

of overlap. Differences in the number of Kataegis clusters and in the prevalence of SNV location within 

and outside of Kataegis clusters in RRMM vs NDMM were assessed by Wilcoxon rank sum tests. 
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Structural variants 

Structural variants (SVs) were detected using the DKFZ SOPHIA workflow version 2.0.2 available in 

https://github.com/DKFZ-ODCF/SophiaWorkflow with the source code of the SOPHIA algorithm 

available in https://bitbucket.org/utoprak/sophia/.9, 16 SOPHIA is an SV detection algorithm 

incorporating discordant mate, split read and a background breakpoint database from 3417 blood 

samples of donors from published international and ongoing internal DKFZ projects. The data in the 

background breakpoint database is obtained from sequencing results across the 101bp Illumina 

Hiseq2000/2500 and 151bp Illumina Hiseq X-Ten technologies. The SV candidate detection is a process 

of split-read and discordant mate evidence collection across each breakpoint as precursors for a SV, 

and SV candidates (pairs of breakpoints) are filtered by a complex decision tree trained by expert 

assessment of orthogonal FISH data. Secondary translocations of the immunoglobulin loci were 

defined as secondary events with one of the breakpoints of the SV not further away than 2MB from 

the target breakpoint of a given primary immunoglobulin translocation (i.e. IG —PrimarySV—> 

PrimaryTarget —SecondarySV—>SecondaryTarget). 

For the statistical comparison of NDMM and RRMM with respect to SV types, only SVs with discordant 

mate support were considered in order to exclude the influences of different WGS libraries used in the 

two projects executed in different sequencing centers. Discordance in terms of mate distance was 

defined as a mate distance more than 5*MedianInsertSize or mate read mapping to a different 

chromosome. This typically limits the scope of the comparison to SVs with sizes ≳1000bps. 

Comparison of SV counts between the RRMM and NDMM cohorts was made using the Kruskal-Wallis 

test. Chromoplexy and chromothripsis statuses were assigned by manual visual inspection of SV calls 

and copy-number profiles on CIRCOS plots. 

Copy number variation detection 

As described previously,9, 16 copy number states were called and estimation of tumor purity and ploidy 

was performed using ACEseq (allele-specific copy number estimation from sequencing; 

https://github.com/DKFZ-ODCF/SophiaWorkflow
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https://www.biorxiv.org/content/early/2017/10/29/210807). Structural variants called with SOPHIA 

were incorporated to improve genome segmentation. In cases where ACEseq provided multiple 

solutions for purity and ploidy, we manually selected the lowest ploidy solution which allowed to fit 

the majority of genomic segments to integer copy numbers and which also was consistent with the 

mutant allele frequency distribution of somatic SNVs. With regard to the TP53 containing region 

ACEseq plots were in addition inspected manually. 

If at least 30% length of a chromosome arm or cytoband was affected by a CNV in a sample, then it 

was considered as chromosome arm-level or cytoband-level event for the sample. These sample level 

counts were used to find cytoband-level events that significantly differ between NDMM and RRMM 

cohorts. Significance of subgroup differences (NDMM vs. RRMM) were assessed by Fisher’s exact test. 

Calculation of measures of genomic instability 

First, genome copy number data from ACEseq was smoothed to prevent artificially elevated genomic 

instability measures due to oversegmentation caused by technical noise. To this end, segments for 

which allele-specific copy numbers did not deviate by more than 0.3 from each other were merged. 

Furthermore, segments smaller than 3 Mb were merged to the more similar neighboring segment as 

previously described.18 Additionally, in the same chromosome, when the segments in p-arm extend 

into the centromeric region and start within the centromeric region in the q-arm, the segments were 

merged. These smoothed and merged segments were used to calculate the homologous 

recombination deficiency (HRD) score18 and the number of large-scale transitions (LST) as previously 

described.19 Briefly, segments larger than 15 Mb that were less than a whole chromosome in length 

and corresponded to a loss of heterozygosity were counted for the HRD score. For the quantification 

of LSTs, breaks between segments of different total copy number were counted with the constraint 

that both segments had to be larger than 10 Mb but did not correspond to entire chromosome arms. 

In addition, the telomeric-allelic imbalance (TAI) score,20 which corresponds to the number of 

chromosomal segments with minimum length of 11MB and allelic imbalance extending into the 

subtelomeric regions, was calculated using the smoothed ACEseq results.21 Genomic instability was 
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quantified as the sum of HRD, LST, and TAI scores. Significance of subgroup differences (NDMM vs. 

RRMM) were assessed by the Wilcoxon rank sum test. 

RNA sequencing 

The paired-end reads were mapped to the STAR index generated reference genome (build 37, version 

hs37d5) using STAR22 (version 2.5.2b). Genes’ exons were defined by the GENCODE v19 gene models.5 

The gene expressions were quantified using featureCounts (Subread version 1.5.1). For differential 

gene expression analysis and detection of enhancer hijacking, raw read counts were normalized by a 

preliminary Counts Per Million (CPM) application where genes with less than 1 CPM were discarded 

from further analyses. Filtered gene read counts were normalized using the TMM method of the edgeR 

R package.23, 24 TMM-normalized read counts were finalized by application of CPM and log2(x+1). 

Gene fusions 

Gene fusions were detected using Arriba version 1.0.0 (https://github.com/suhrig/arriba) as described 

previously.25 To further enrich for high-confidence fusion predictions, events involving genes marked 

as putative by the gene model or events with fewer supporting reads than 1 % of the local coverage 

(<5 % for read-through fusions) were discarded. 
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Supplementary Figure legends 

Suppl. Figure S1. RRMM original data vs RRMM subsampled data vs NDMM for graphs presented in 

main figure 1, analysis of Copy number variants in NDMM and RRMM patients, and Kataegis and 

SNV distribution in RRMM vs NDMM. 

A. SV and SNV load per patient in RRMM original vs RRMM subsampled vs NDMM. SNV and SV 

counts are plotted for each patient showing a higher overall mutational load in RRMM, both 

the original data (orange) and the subsampled dataset (blue), vs NDMM (red). Each dot 

represents an individual patient. The example cases shown in main Figure 1, panels C and D, 

are annotated as RRMM_16 and RRMM_15, respectively. 

B. Differences in SV types in RRMM original vs RRMM subsampled vs NDMM. Median and range 

of number of overall SVs per patient in RRMM, both original data (orange) and subsampled 

dataset (blue), vs NDMM (red) are shown as well as deletions (DEL), duplications (DUP), 

inversions (INV), and translocations (TRA). 

C. Genome-wide small variant mutational load in RRMM original vs RRMM subsampled vs 

NDMM. The number of mutations per patients and length of genome in megabases (MB) is 

shown in RRMM, both original data (orange) and subsampled dataset (blue), vs NDMM (red). 

D. Genomic instability scores in RRMM original vs RRMM subsampled vs NDMM. The unbiased 

sum of HRD, LST, and TAI scores is shown for RRMM, both original data (orange) and 

subsampled dataset (blue), vs NDMM (red) illustrating a higher genomic instability in RRMM. 

E. Analysis of Copy number variants in NDMM and RRMM patients. Overview of somatic copy 

number aberrations (SCNAs) in NDMM vs RRMM patients. Orange indicates gain, blue 

indicates loss, red indicates loss of heterozygosity. 

F. Recurrent regions of Kataegis in RRMM (blue) and NDMM (red) excluding the immunoglobulin 

loci. To compensate for differing sequencing depths in both cohorts, the RRMM dataset was 

subsampled for these analyses. 
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G.  Kataegis and SNV distribution in RRMM vs NDMM. To compensate for differing sequencing 

depths in both cohorts, the RRMM dataset was subsampled for these analyses. 

Suppl. Figure S2. RNA expression (A) and prediction of functional relevance by CADD score (B) of 

significant driver genes in RRMM.  

A. Expression of small variants detected in significant driver genes in RRMM is indicated by 

variant allele frequency (VAF) in RNA sequencing with each dot representing an individual 

variant. 

B. Prediction of functional relevance of small variants detected in significant driver genes in 

RRMM is indicated by Combined Annotation Dependent Depletion (CADD) score with each dot 

representing an individual variant. A CADD score > 20 indicates likely deleteriousness of the 

variant. 

Suppl. Figure S3. Mutational frequency in gene groups/networks NDMM vs RRMM.  

The prevalence of functional mutations in the following gene groups or networks in NDMM (red) vs 

RRMM (blue) is shown in the upper panel from left to right: genes associated with resistance to IMiDs, 

epigenetic modifiers, MAPK pathway, NFKB signaling, resistance to PIs, sensitivity to PARP inhibitors, 

NOTCH proteins, HECT E3 ubiquitin ligases, PI3K/AKT/MTOR signaling. In the lower panel statistical 

significance of mutation prevalence for each gene group are indicated. Details on composition of gene 

groups are given in supplemental Table S4. 

Suppl. Figure S4. Mutations in gene group ‘IMiD resistance’ in RRMM.  

Genes affected by SNVs or Indels in the gene group ‘IMiD resistance’ and their prevalence in the RRMM 

cohort are shown as well as copy number aberrations (CNAs) of chromosome arms 13q, 1q, 17p, 1p, 

presence or absence of hyperdiploid karyotype, and the genomic instability score. 
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Suppl. Figure S5. Mutations in gene group ‘PI resistance’ in RRMM.  

Genes affected by SNVs or Indels in the gene group ‘PI resistance’ and their prevalence in the RRMM 

cohort are shown as well as copy number aberrations (CNAs) of chromosome arms 13q, 1q, 17p, 1p, 

presence or absence of hyperdiploid karyotype, and the genomic instability score. 

Suppl. Figure S6. Mutations in gene group ‘PARP inhibitor sensitivity’ in RRMM.  

Genes affected by SNVs or Indels in the gene group ‘PAPR inhibitor sensitivity’ and their prevalence in 

the RRMM cohort are shown as well as copy number aberrations (CNAs) of chromosome arms 13q, 1q, 

17p, 1p, presence or absence of hyperdiploid karyotype, and the genomic instability score. 

Suppl. Figure S7. Exposure to mutational signatures in RRMM original data vs RRMM subsampled 

data vs NDMM.  

A. The absolute exposure to mutational signatures based on the Alexandrov COSMIC (AC) 

catalogue with the addition of the MM1 signature recently linked to melphalan exposure is 

shown for RRMM, both original data (orange) and subsampled dataset (blue), vs RMM (green) 

vs NDMM (red) patients. Most notable is an increased impact of signatures AC3 (light brown) 

and MM1 (black) in RRMM. 

B. HRDetect scores in RRMM, both original data (orange) and subsampled dataset (blue), vs RMM 

(green) vs NDMM (red) patients. 

Suppl. Figure S8. Highly complex IGL translocation in patient RRMM_34.  

Translocations involving the immunoglobulin heavy chain (IGH) locus and the lambda light chain (IGL) 

are shown.  Orange lines represent immunoglobulin locus translocations, purple lines represent 

secondary immunoglobulin locus related translocations, and names of partner genes are given. 

Secondary translocations of the immunoglobulin loci were defined as secondary events with one of 

the breakpoints of the SV not further away than 2MB from the target breakpoint of a given primary 

immunoglobulin translocation (i.e. IG —PrimarySV—> PrimaryTarget —SecondarySV—
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>SecondaryTarget). To allow for better readability, relative size of chromosomes 11, 12, 14, and 22 are 

increased. 

Suppl. Figure S9. FAM46C rearrangements in RRMM and expression analysis of target genes. 

A. FAM46C rearrangements in RRMM. Green lines represent translocations, blue lines deletions, 

red lines duplications, and black lines inversions. Names of partner genes of interest are given, 

notable are FAM46C;MYC translocations. To allow for better readability, relative size of 

chromosome 1 is increased. 

B. Gene expression profile of the LMO4 gene across the RRMM cohort. The case with the 

putative enhancer hijacking of the FAM46C enhancer shows a markedly increased LMO4 

expression. 

Suppl. Figure S10. Gene expression of MYC (A), CD40 (B), H2AFJ (C), CXCR4 (D), KMT2A (E), and 

CREBL2 (F) as opposed to expression of MYCN.  

Expression of MYC, CD40, H2AFJ, CXCR4, KMT2A, and CREBL2 for individual RRMM patients is shown 

by red lines, expression of MYCN by blue lines. 
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Supplementary Tables 

Suppl. Table S1. Patient characteristics of RRMM cohort. 

Suppl. Table S2. Detailed information on small variants in RRMM cohort as Excel file. 

Legend for table columns is as follows: 

PID 

VAR_TYPE SNVs or Indels 

CHROM 

POS 

REF 

ALT 

VAR_SOURCE Source of the somatic variant: Either from default 
somatic workflow or from TiNDA rescue 

ANNOVAR_FUNCTION Exonic or splicing 

GENE Gene name 

EXONIC_CLASSIFICATION Exonic protein sequence altering type 

ANNOVAR_TRANSCRIPTS Transcript information 

Tumor_VAF Tumor variant allele frequency (VAF) 

Control_VAF Control VAF 

RNA_VAF VAF in RNAseq data 

ANNOTATION_RNA Annotation tag about the expression status of the 
variant 

CADD_PHRED CADD (v1.3) score in Phred scale 

gnomAD_MAF GnomAD (v2.1) genome MAF 

HYPER_DIPLOID Hyper diploid sample classification 

GENOMIC_INSTABILITY_SCORE Genomic instability sample score 

HRDetect Genomic instability sample-level scores from 
HRDetect workflow 

abs_AC3 Absolute AC3 mutational signature for the sample 

norm_AC3 Normalized AC3 mutational signature for the sample 

VAF: Variant allele frequency; MAF: Minor allele frequency; HRD: Homologous recombination 

deficiency; LST: Large-scale transition; TAI: Telomeric allelic imbalance; AC3: Alexandrov COSMIC 

signature 3 
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Suppl. Table S3. Analysis of mono- vs bi-allelic events. 

Suppl. Table S4. Composition of gene groups and networks. 

Suppl. Table S5. Detailed information on small variants in gene groups ‘IMiD resistance’, 

‘PI resistance’, and ‘PARP inhibitor sensitivity’ in RRMM cohort as Excel file. 

Legend for table columns as described for suppl. Table S2. 

Suppl. Table S6. Mutational signatures and asserted mutational mechanisms in RRMM cohort. 
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Suppl. Table S1: Patient characteristics of RRMM cohort.

ID
age 

(years)
sex

time from 
diagnosis 

(years)
MM type ISS

hyperdiploid 
karyotype

high-risk cytogenetics at RRMM by 
FISH

#prior 
therapies

last therapy
prior 
IMID

prior PI prior ASCT
refr to 

LEN
refr to 
POM

refr to 
BTZ

refr to 
CFZ

refr to 
CD38

part of cohort of 
Kortuem et al.  (1)

RRMM_1 68 male 3,2 BJ lambda 2 no del(17p) 6 CFZ-Dex yes yes yes yes yes yes yes no no
RRMM_2 74 male 5,5 IgA kappa 2 no del(17p), t(4;14) 4 CFZ-Dex yes yes yes yes no yes yes no yes
RRMM_3 40 male 1,5 IgG kappa 2 no del(17p) 2 LEN-Cy-Dex yes yes yes yes no yes no no no
RRMM_4 65 female 3,2 IgG kappa 3 yes no 5 CFZ-Dex yes yes yes yes yes yes yes no no
RRMM_5 70 female 6,2 IgG lambda 2 yes no 4 POM-Cy-Dex yes yes yes yes yes no yes no no
RRMM_6 56 male 10,1 IgG kappa 1 yes no 4 POM-Dex yes yes yes yes yes no no no no
RRMM_7 59 male 7,3 IgG kappa 1 no no 5 CFZ-LEN-Dex yes yes yes yes no yes yes no no
RRMM_8 78 male 4,7 BJ lambda 3 no >3 copies 1q21 6 CFZ-Dex yes yes no yes yes yes yes no no
RRMM_9 67 male 16,0 IgA kappa na yes no 8 POM-Dex yes yes yes yes yes yes yes no yes
RRMM_10 73 female 4,1 IgG kappa 2 no del(17p), >3 copies 1q21, t(4;14) 8 CFZ-Dex yes yes yes yes yes yes yes no no
RRMM_11 71 male 3,9 IgA lambda 3 no >3 copies 1q21, t(4;14) 5 POM-Dex yes yes yes yes yes yes no no yes
RRMM_12 76 female 7,4 IgG kappa na no >3 copies 1q21 9 POM-Dex yes yes no no yes yes no no no
RRMM_13 78 female 2,2 IgG kappa 2 yes no 3 CD38-POM-Dex yes yes no yes yes yes no yes no
RRMM_14 63 female 1,8 IgA lambda 2 yes del(17p) 3 CFZ-Cy-Dex yes yes yes yes no no yes no no
RRMM_15 49 male 1,3 IgG kappa 2 yes del(17p), >3 copies 1q21 4 POM-Dex yes yes yes yes yes yes no no no
RRMM_16 75 male 11,1 IgG kappa na yes del(17p) 8 CFZ-Dex yes yes yes yes yes yes yes no no
RRMM_17 55 female 1,4 IgG kappa 1 no del(17p) 3 POM-Dex yes yes yes yes yes yes no no no
RRMM_18 67 female 9,5 IgG lambda 1 no no 6 CFZ-LEN-Dex yes yes yes yes yes yes yes no no
RRMM_19 66 male 3,9 IgA lambda 3 no del(17p), t(4;14) 4 SLAMF7-POM-Dex yes yes yes yes yes yes yes no no
RRMM_20 65 female 4,2 IgG kappa 1 yes del(17p), >3 copies 1q21 3 POM-Dex yes yes yes no yes yes no no yes
RRMM_21 64 female 12,8 IgG kappa na yes no 6 CFZ-LEN-Dex yes yes yes yes no no yes no no
RRMM_22 69 male 4,2 IgG lambda 2 no del(17p), t(4;14) 11 Ruxolitinib yes yes yes yes yes yes yes no no
RRMM_23 77 male 12,9 IgA lambda 3 yes no 7 POM-Dex yes yes yes yes yes no no no no
RRMM_24 68 male 5,9 IgG kappa 3 yes >3 copies 1q21 5 POM-Dex yes yes yes yes yes yes no no no
RRMM_25 53 female 8,6 IgG kappa 2 yes del(17p) 8 POM-Dex yes yes yes yes yes yes yes no yes
RRMM_26 54 male 2,1 IgG kappa 3 yes no 3 POM-Dex yes yes yes yes yes no no no yes
RRMM_27 62 female 4,4 IgG kappa 1 yes no 4 POM-Dex yes yes yes no yes yes no no no
RRMM_28 47 male 1,9 BJ lambda na no del(17p), >3 copies 1q21, t(4;14) 3 CFZ-LEN-Dex yes yes yes yes no yes yes no no
RRMM_29 67 female 6,8 IgG kappa na yes no 9 CFZ-Dex yes yes yes yes yes yes yes no no
RRMM_30 51 male 4,4 BJ lambda na no >3 copies 1q21 8 CFZ-Dex yes yes yes yes yes no yes no no
RRMM_31 53 male 6,8 IgG kappa 2 yes no 5 CFZ-Dex yes yes yes yes no no yes no yes
RRMM_32 85 female 13,2 BJ lambda 1 yes no 13 CFZ-Cy-Dex yes yes no yes yes yes yes no yes
RRMM_33 48 female 1,7 IgG lambda na yes no 5 CFZ-Dex yes yes yes yes yes yes yes no yes
RRMM_34 63 female 3,4 IgG lambda 1 no del(17p) 3 POM-Dex yes yes yes yes yes yes yes no no
RRMM_35 42 female 7,0 IgG lambda 1 no no 13 CD38-LEN-Dex yes yes yes yes yes yes yes yes no
RRMM_36 38 male 2,4 IgA lambda 3 yes no 5 BTZ-THA-Dex-PACE yes yes yes yes no yes yes no no
RRMM_37 70 male 5,0 IgA kappa 1 yes no 5 CFZ-Dex yes yes yes yes no no yes no no
RRMM_38 60 male 9,6 IgG kappa 1 no del(17p) 4 LEN-Dex yes yes yes yes no yes no no no
RRMM_39 64 female 3,3 BJ kappa 1 no del(17p) 5 POM-Dex yes yes no yes yes yes no yes no

abbreviations: MM - multiple myeloma; BJ - bence jones; ISS - international staging system; na - not available; CFZ - carfilzomib; Dex - dexamethasone; LEN - lenalidomide; Cy - cyclophosphamide; POM - pomalidomide; CD38 - anti-CD38 
monoclonal antibody; SLAMF7 - anti-SLAMF7 monoclonal antibody; BTZ - bortezomib; THA - thalidomide; PACE - cisplatin, adriamycin, cyclophosphamide, etoposide; IMID - immunomodulatory agent; PI - proteasome inhibitor; ASCT - autologous 
stem cell transplantation; refr - refractory. (1) Kortüm et al. Blood 2016, Targeted sequencing of refractory myeloma reveals a high incidence of mutations in CRBN and Ras pathway genes.



Suppl. Table S3: Analysis of mono- vs bi-allelic events.
ID CDKN2C FAM46C ASXL2 BIRC2 RB1 PCDH17 TRAF3 CYLD WWOX TP53 NF1 IGLL5 SNX29 NBAS MMRN1
RRMM_1 wildtype wildtype bi-allelic wildtype mono-allelic mono-allelic wildtype wildtype wildtype mono-allelic mono-allelic mono-allelic wildtype bi-allelic wildtype
RRMM_2 wildtype wildtype wildtype wildtype mono-allelic mono-allelic mono-allelic mono-allelic mono-allelic bi-allelic wildtype wildtype wildtype wildtype wildtype
RRMM_3 mono-allelic mono-allelic wildtype wildtype mono-allelic mono-allelic bi-allelic wildtype wildtype bi-allelic bi-allelic mono-allelic wildtype wildtype mono-allelic
RRMM_4 wildtype mono-allelic wildtype wildtype bi-allelic mono-allelic wildtype mono-allelic mono-allelic wildtype wildtype wildtype wildtype wildtype bi-allelic
RRMM_5 wildtype bi-allelic wildtype wildtype wildtype wildtype wildtype mono-allelic mono-allelic wildtype wildtype mono-allelic wildtype wildtype wildtype
RRMM_6 wildtype mono-allelic wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype mono-allelic
RRMM_7 wildtype wildtype wildtype wildtype mono-allelic mono-allelic wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype
RRMM_8 wildtype wildtype wildtype bi-allelic mono-allelic mono-allelic wildtype wildtype wildtype wildtype wildtype mono-allelic wildtype wildtype wildtype
RRMM_9 wildtype wildtype wildtype mono-allelic wildtype wildtype wildtype wildtype wildtype wildtype wildtype mono-allelic wildtype wildtype wildtype
RRMM_10 wildtype mono-allelic wildtype wildtype bi-allelic bi-allelic wildtype mono-allelic wildtype bi-allelic wildtype mono-allelic wildtype wildtype wildtype
RRMM_11 mono-allelic mono-allelic wildtype wildtype mono-allelic mono-allelic bi-allelic wildtype wildtype mono-allelic wildtype bi-allelic wildtype wildtype wildtype
RRMM_12 wildtype wildtype wildtype mono-allelic bi-allelic mono-allelic wildtype wildtype wildtype mono-allelic wildtype wildtype wildtype wildtype wildtype
RRMM_13 wildtype mono-allelic wildtype wildtype mono-allelic bi-allelic wildtype wildtype wildtype wildtype mono-allelic bi-allelic wildtype wildtype wildtype
RRMM_14 wildtype wildtype wildtype wildtype bi-allelic wildtype wildtype mono-allelic mono-allelic bi-allelic wildtype bi-allelic wildtype wildtype wildtype
RRMM_15 bi-allelic mono-allelic wildtype wildtype mono-allelic mono-allelic wildtype mono-allelic mono-allelic bi-allelic wildtype wildtype bi-allelic wildtype mono-allelic
RRMM_16 wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype mono-allelic mono-allelic wildtype wildtype wildtype wildtype
RRMM_17 wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype bi-allelic wildtype bi-allelic wildtype wildtype wildtype
RRMM_18 wildtype wildtype wildtype wildtype wildtype wildtype wildtype bi-allelic mono-allelic wildtype wildtype mono-allelic wildtype wildtype wildtype
RRMM_19 wildtype mono-allelic mono-allelic wildtype mono-allelic mono-allelic mono-allelic mono-allelic mono-allelic bi-allelic wildtype bi-allelic wildtype bi-allelic wildtype
RRMM_20 mono-allelic mono-allelic wildtype wildtype mono-allelic mono-allelic wildtype wildtype wildtype mono-allelic wildtype mono-allelic wildtype wildtype wildtype
RRMM_21 wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype mono-allelic wildtype mono-allelic mono-allelic wildtype wildtype
RRMM_22 wildtype wildtype wildtype wildtype mono-allelic mono-allelic wildtype wildtype wildtype wildtype wildtype bi-allelic wildtype wildtype wildtype
RRMM_23 wildtype mono-allelic wildtype wildtype mono-allelic wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype
RRMM_24 wildtype mono-allelic wildtype wildtype mono-allelic mono-allelic wildtype mono-allelic mono-allelic wildtype wildtype wildtype wildtype wildtype mono-allelic
RRMM_25 wildtype wildtype wildtype wildtype bi-allelic mono-allelic wildtype mono-allelic mono-allelic mono-allelic wildtype wildtype wildtype wildtype mono-allelic
RRMM_26 wildtype wildtype wildtype wildtype wildtype wildtype wildtype bi-allelic wildtype mono-allelic wildtype wildtype wildtype wildtype wildtype
RRMM_27 wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype bi-allelic wildtype wildtype wildtype
RRMM_28 wildtype mono-allelic wildtype wildtype bi-allelic mono-allelic wildtype wildtype wildtype mono-allelic wildtype bi-allelic wildtype mono-allelic wildtype
RRMM_29 wildtype mono-allelic wildtype wildtype mono-allelic mono-allelic wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype
RRMM_30 wildtype bi-allelic wildtype wildtype mono-allelic mono-allelic bi-allelic wildtype mono-allelic wildtype wildtype bi-allelic wildtype wildtype wildtype
RRMM_31 wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype wildtype
RRMM_32 wildtype wildtype wildtype wildtype mono-allelic mono-allelic wildtype bi-allelic mono-allelic wildtype wildtype bi-allelic wildtype wildtype wildtype
RRMM_33 wildtype mono-allelic wildtype wildtype mono-allelic mono-allelic bi-allelic wildtype wildtype wildtype wildtype bi-allelic wildtype wildtype wildtype
RRMM_34 wildtype wildtype wildtype wildtype mono-allelic mono-allelic wildtype wildtype mono-allelic bi-allelic mono-allelic wildtype wildtype wildtype wildtype
RRMM_35 wildtype wildtype wildtype wildtype wildtype wildtype wildtype bi-allelic wildtype wildtype wildtype bi-allelic wildtype wildtype wildtype
RRMM_36 wildtype wildtype wildtype wildtype wildtype wildtype wildtype mono-allelic mono-allelic wildtype wildtype bi-allelic wildtype wildtype wildtype
RRMM_37 mono-allelic mono-allelic wildtype wildtype bi-allelic mono-allelic bi-allelic mono-allelic mono-allelic wildtype wildtype wildtype wildtype wildtype wildtype
RRMM_38 wildtype wildtype wildtype wildtype mono-allelic bi-allelic wildtype wildtype wildtype mono-allelic wildtype wildtype wildtype wildtype wildtype
RRMM_39 mono-allelic mono-allelic wildtype wildtype mono-allelic mono-allelic bi-allelic wildtype wildtype mono-allelic wildtype wildtype wildtype wildtype wildtype



Suppl. Table S4: Composition of gene groups and networks.
resistance to 
PIs

resistance to 
IMiDs

MAPK 
pathway

NFKB signaling

PSMC1 CRBN ABL1 GEN1 PRMT6 USP7 ARAF REL
PSMC2 IZKF1 ATAD5 GIYD1 PSMC3IP WRN BRAF RELA
PSMC3 IZKF3 ATM GIYD2 PTEN XAB2 RAF1 RELB
PSMC4 IRF4 ATR GTF2H3 RAD21 XRCC2 MAP2K1 NFKB1
PSMC5 CUL4A AURORA HELLS RAD23B XRCC3 MAP2K2 NFKB2
PSMC6 CUL4B BAP1 HUS1 RAD50 XRCC4 MAPK1 IKBKB
TJP1 DDB1 BARD1 INIP RAD51 XRCC6 MAPK3 CHUK
PSMB9 RBX1 BLM INO80D RAD51B ZSWIM7 HRAS IKBKG
PSMB8 COPS1 BRCA1 IPMK RAD51C KRAS NFKBIA
PSMB5 COPS2 BRCA2 KAT5 RAD51D NRAS TRADD
ERN1 COPS3 BRCC3 LIG3 RAD52 SOS1 RIPK1
XBP1 COPS4 BRIP1 LIG4 RAD54B SOS2 TRAF2
PSMA1 COPS5 CDC14B MAD2L2 RAD54L NF1 TRAF5
PSMA2 COPS6 CDK12 MAPK12 RBBP8 GRB2 MAP3K14
PSMA3 COPS7 CDK5 MCM2 RECQL4 RASA1 BIRC2
PSMA4 COPS8 CDK7 MCM3 REV3L RASA2 BIRC3
PSMA5 CAND1 CHEK1 MCM6 RFC2 PTPN11 TRAF3
PSMA6 UBE2M CHEK2 MDC1 RNF168 RASGRF1 TRAF1
PSMA7 UBE2D3 DDB1 miR-103 RPA1 RASGRF2 TRAF6
PSMA8 UBE2G1 DMC1 miR-107 RRM1 RASGRP1 TAK1
PSMB1 DNASE1L2 miR-222 RRM2B RASGRP2 NFKBIB
PSMB2 DNMT3A miR-506 SHFM1 RASGRP3 NFKBIE
PSMB3 DUT miR-9 SHPRH RASGRP4 IRAK1
PSMB4 EME1 MMS22L SLX4 RASAL1 TRAF7
PSMB6 EME2 MNAT1 SMARCA2 RASAL2 RIPK2
PSMB7 ERCC1 MND1 SMARCA5 RASA4 RIPK3
PSMB10 ERCC4 MRE11A SMARCAL1 RASA3
PSMB11 ERCC8 MSH3 SMC3
PSMD1 ESCO1 MUM1 SMG1
PSMD2 ESCO2 MUS81 SPO11
PSMD3 EWSR1-FLI1 NAMPT SSRP1
PSMD4 FAAP20 NAP1L1 STK36
PSMD7 FAAP24 NBN SUMO1
PSMD8 FAM175A ORC1L TEX11
PSMD11 FANCA ORC5L TIMELESS
PSMD12 FANCB PALB2 TMPRSS2-ERG
PSMD13 FANCC PAPD7 TOP2B
PSMD14 FANCD2 PARP1 TOP3A
PSME1 FANCE PLK3 TOPBP1
PSME2 FANCF PNKP TP53BP1
PSME3 FANCG POLB TTDN1
PSME4 FANCI POLD3 UBA1
PSMF1 FANCL POLH UBE2A
SHFM1 FANCM POLK UBE2N
ADRM1 FEN1 POLM UNG

G2E3 POLQ USP1
GADD45A POLR2F USP10

PARP inhibitor sensitivity



HIST1H1A H2BFM PHF2 HDAC5 ARID1B CTCF

HIST1H1B H2BFWT PHF8 HDAC6 ARID2 MBD1

HIST1H1C HIST1H3A ASH1L HDAC7 ARID3A MBD2

HIST1H1D HIST1H3B CARM1 HDAC8 ARID3B MBD3

HIST1H1E HIST1H3C DOT1L HDAC9 ARID3C MBD4

HIST1H1T HIST1H3D EED SIRT1 ARID4A MBD5

H1FOO HIST1H3E EHMT1 SIRT2 ARID4B MBD6

H1FNT HIST1H3F EHMT2 SIRT3 ARID5A MECP2

H1F0 HIST1H3G EZH1 SIRT4 ARID5B RAG2

H1FX HIST1H3H EZH2 SIRT5 ASXL1 TDG

HIST1H2AA HIST1H3I MEN1 SIRT6 ATRX TP53BP1

HIST1H2AB HIST1H3J NSD1 SIRT7 BRD7

HIST1H2AC HIST2H3D PRDM2 ZBTB33 CHD1

HIST1H2AD HIST3H3 PRMT1 BRPF1 CHD2 

HIST1H2AE H3F3A PRMT2 CLOCK CHD3

HIST1H2AG H3F3B PRMT5 CREBBP CHD4

HIST1H2AH H3F3C PRMT6 ELP3 CHD5

HIST1H2AJ HIST1H4A PRMT7 EP300 CHD6

HIST1H2AK HIST1H4B SETD1A EP400 CHD8

HIST1H2AL HIST1H4C SETD1B GNAT1 CHD9

HIST1H2AM HIST1H4D SETD2 GNAT2 DPF1

HIST2H2AB HIST1H4E SETD3 GNAT3 DPF2

HIST2H2AC HIST1H4F SETD7 GTF3C4 INO80

HIST3H2A HIST1H4G SETD8 HAT1 KLF1

H2AFB3 HIST1H4H SETDB1 KAT2A MLF1IP

H2AFJ HIST1H4I SETDB2 KAT2B PBRM1

H2AFV HIST1H4J SETMAR KAT5 PHF10

H2AFX HIST1H4K SMYD1 KAT6A RBBP4

H2AFY HIST1H4L SMYD2 KAT6B SET

H2AFY2 HIST4H4 SMYD3 KAT7 SMARCA1

H2AFZ KDM1A SUV39H1 KAT8 SMARCA2

HIST1H2BA KDM1B SUV39H2 MORF4L1 SMARCA4

HIST1H2BB KDM2A SUV420H1 NCOA1 SMARCA5

HIST1H2BC KDM2B SUV420H2 NCOA2 SMARCAD1

HIST1H2BD KDM3A SUZ12 NCOA3 SMARCAL1

HIST1H2BE KDM3B WHSC1 TAF1 SMARCB1

HIST1H2BF KDM4A WHSC1L1 TAF1L SMARCC1

HIST1H2BG KDM4B KMT2A TAF3 SMARCC2

HIST1H2BH KDM4C KMT2D DNMT1 SMARCD1

HIST1H2BI KDM4D KMT2C DNMT3A SMARCD2

HIST1H2BJ KDM5A KMT2B DNMT3B SMARCD3

HIST1H2BK KDM5B KMT2E IDH1 SMARCE1

HIST1H2BL KDM5C BAZ2A IDH2 SRCAP

HIST1H2BM KDM5D HDAC1 TET1 BPTF

HIST1H2BN KDM6A HDAC10 TET2 BRD2

HIST1H2BO KDM6B HDAC11 TET3 BRD4

HIST2H2BE KDM7A HDAC2 ACTL6A BRD8

HIST2H2BF KDM8 HDAC3 ACTL6B CBX5

HIST3H2BB UTY HDAC4 ARID1A CBX7

epigenetic modifiers



PI3K/AKT/ 
MTOR 
pathway

NOTCH 
receptors

HECT E3 
ligases

PIK3CA NOTCH1 NEDD4
PIK3CB NOTCH2 NEDD4L
PIK3CD NOTCH3 SMURF1
PIK3R1 NOTCH4 SMURF2
PIK3R2 ITCH
PIK3R3 WWP1
PIK3R5 WWP2
PIK3R6 HECW1
PIK3CG HECW2
PTEN HERC1
AKT1 HERC2
AKT2 HERC3
AKT3 HERC4
PDK1 HERC5
MTOR HERC6
RICTOR UBE3A
TCL1A UBR5
TCL1B HACE1
PHLPP1 HUWE1
PHLPP2 HECT2D
TSC1 HECTD4
TSC2 TRIP12
RHEB G2E3
RPTOR HECTD1
EIF4EBP1 UBE3B
EIF4E UBE3C
RPS6KB1 AREL1
EIF4B HECTD3
RPS6
MLST8
AKT1S1
DEPTOR
TTI1
TELO2
MAPKAP1
PRR5
PRR5L
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Suppl. Table S6. Mutational signatures and asserted mutational mechanisms in RRMM cohort.
Name Correspondence in COSMIC v2 colour Mutational mechanism
AC1 SBS1 green Clock-like; spontaneous deamination
AC2 SBS2 pink APOBEC
AC3 SBS3 gold Homologous recombination repair deficiency
AC5 SBS5 blue Clock-like, mechanism unknown
AC6 SBS6 orange Mismatch repair deficiency
AC9 SBS9 brown Polymerase ƞ
AC17 SBS17 lightgreen mechanism unknown
AC27 SBS27 chocolate mechanism unknown
MM1 - black melphalan




