8,076 research outputs found
Humility in Personality and Positive Psychology
A case could be made that the practice of philosophy demands a certain humility, or at least intellectual humility, requiring such traits as inquisitiveness, openness to new ideas, and a shared interest in pursuing truth. In the positive psychology movement, the study of both humility and intellectual humility has been grounded in the methods and approach of personality psychology, specifically the examination of these virtues as traits. Consistent with this approach, the chapter begins with a discussion of the examination of intellectual humility as a “character trait,” comparing intellectual humility to various well-known traits in the personality psychology literature (e.g the “Big 5” and the “Big 2”) as well as other key traits such as the need for cognition and the need for closure. The chapter then turns to the proverbial issue of whether virtues in general, and intellectual humility in particular, are a matter of “nature”- that is, an innate trait determined by heritability, or “nurture” – a trait mostly shaped by situation and environment. While the chapter does not resolve the issue, it provides occasion for an examination of the role of situations in the expression of intellectual humility, and for the interaction of “situation” and “trait.” The chapter concludes with a discussion of how the interaction of trait with situation provides the most robust understanding of the psychology of any character virtue, including humility and intellectual humility
Information, evolution and utility
Human utility embodies a number of seemingly irrational aspects. The leading example in this paper is that utilities often depend on the presence of salient unchosen alternatives. Our focus is to understand why an evolutionary process might optimally lead to such seemingly dysfunctional features in our motivations and to derive implications for the nature of our utility functions.Evolution, information, internal conflict, self control, temptation, time consistency, utility
Fuel Injector: Air swirl characterization aerothermal modeling, phase 2, volume 2
A well integrated experimental/analytical investigation was conducted to provide benchmark quality data relevant to prefilming type airblast fuel nozzle and its interaction with combustor dome air swirler. The experimental investigation included a systematic study of both single-phase flows that involved single and twin co-axial jets with and without swirl. A two-component Phase Doppler Particle Analyzer (PDPA) equipment was used to document the interaction of single and co-axial air jets with glass beads that simulate nonevaporating spray and simultaneously avoid the complexities associated with fuel atomization processes and attendant issues about the specification of relevant boundary conditions. The interaction of jets with methanol spray produced by practical airblast nozzle was also documented in the spatial domain of practical interest. Model assessment activities included the use of three turbulence models (k-epsilon, algebraic second moment (ASM) and differential second moment (DSM)) for the carrier phase, deterministic or stochastic Lagrangian treatment of the dispersed phase, and advanced numerical schemes. Although qualitatively good comparison with data was obtained for most of the cases investigated, the model deficiencies in regard to modeled dissipation rate transport equation, single length scale, pressure-strain correlation, and other critical closure issues need to be resolved before one can achieve the degree of accuracy required to analytically design combustion systems
Efficiently Learning from Revealed Preference
In this paper, we consider the revealed preferences problem from a learning
perspective. Every day, a price vector and a budget is drawn from an unknown
distribution, and a rational agent buys his most preferred bundle according to
some unknown utility function, subject to the given prices and budget
constraint. We wish not only to find a utility function which rationalizes a
finite set of observations, but to produce a hypothesis valuation function
which accurately predicts the behavior of the agent in the future. We give
efficient algorithms with polynomial sample-complexity for agents with linear
valuation functions, as well as for agents with linearly separable, concave
valuation functions with bounded second derivative.Comment: Extended abstract appears in WINE 201
Tunable effective g-factor in InAs nanowire quantum dots
We report tunneling spectroscopy measurements of the Zeeman spin splitting in
InAs few-electron quantum dots. The dots are formed between two InP barriers in
InAs nanowires with a wurtzite crystal structure grown by chemical beam
epitaxy. The values of the electron g-factors of the first few electrons
entering the dot are found to strongly depend on dot size and range from close
to the InAs bulk value in large dots |g^*|=13 down to |g^*|=2.3 for the
smallest dots. These findings are discussed in view of a simple model.Comment: 4 pages, 3 figure
Imaging a 1-electron InAs quantum dot in an InAs/InP nanowire
Nanowire heterostructures define high-quality few-electron quantum dots for
nanoelectronics, spintronics and quantum information processing. We use a
cooled scanning probe microscope (SPM) to image and control an InAs quantum dot
in an InAs/InP nanowire, using the tip as a movable gate. Images of dot
conductance vs. tip position at T = 4.2 K show concentric rings as electrons
are added, starting with the first electron. The SPM can locate a dot along a
nanowire and individually tune its charge, abilities that will be very useful
for the control of coupled nanowire dots
Giardia Cyst Wall Protein 1 Is a Lectin That Binds to Curled Fibrils of the GalNAc Homopolymer
The infectious and diagnostic stage of Giardia lamblia (also known as G. intestinalis or G. duodenalis) is the cyst. The Giardia cyst wall contains fibrils of a unique β-1,3-linked N-acetylgalactosamine (GalNAc) homopolymer and at least three cyst wall proteins (CWPs) composed of Leu-rich repeats (CWPLRR) and a C-terminal conserved Cys-rich region (CWPCRR). Our goals were to dissect the structure of the cyst wall and determine how it is disrupted during excystation. The intact Giardia cyst wall is thin (~400 nm), easily fractured by sonication, and impermeable to small molecules. Curled fibrils of the GalNAc homopolymer are restricted to a narrow plane and are coated with linear arrays of oval-shaped protein complex. In contrast, cyst walls of Giardia treated with hot alkali to deproteinate fibrils of the GalNAc homopolymer are thick (~1.2 µm), resistant to sonication, and permeable. The deproteinated GalNAc homopolymer, which forms a loose lattice of curled fibrils, is bound by native CWP1 and CWP2, as well as by maltose-binding protein (MBP)-fusions containing the full-length CWP1 or CWP1LRR. In contrast, neither MBP alone nor MBP fused to CWP1CRR bind to the GalNAc homopolymer. Recombinant CWP1 binds to the GalNAc homopolymer within secretory vesicles of Giardia encysting in vitro. Fibrils of the GalNAc homopolymer are exposed during excystation or by treatment of heat-killed cysts with chymotrypsin, while deproteinated fibrils of the GalNAc homopolymer are degraded by extracts of Giardia cysts but not trophozoites. These results show the Leu-rich repeat domain of CWP1 is a lectin that binds to curled fibrils of the GalNAc homopolymer. During excystation, host and Giardia proteases appear to degrade bound CWPs, exposing fibrils of the GalNAc homopolymer that are digested by a stage-specific glycohydrolase. Author SummaryWhile the walls of plants and fungi contain numerous sugar homopolymers (cellulose, chitin, and β-1,3-glucans) and dozens of proteins, the cyst wall of Giardia is relatively simple. The Giardia wall contains a unique homopolymer of β-1,3-linked N-acetylgalactosamine (GalNAc) and at least three cyst wall proteins (CWPs), each of which is composed of Leu-rich repeats and a C-terminal Cys-rich region. The three major discoveries here are: 1) Fibrils of the GalNAc homopolymer are curled and form a lattice that is compressed into a narrow plane by bound protein in intact cyst walls. 2) Leu-rich repeats of CWP1 form a novel lectin domain that is specific for fibrils of the GalNAc homopolymer, which can be isolated by methods used to deproteinate fungal walls. 3) A cyst-specific glycohydrolase is able to degrade deproteinated fibrils of the GalNAc homopolymer. We incorporate these findings into a new curled fiber and lectin model of the intact Giardia cyst wall and a protease and glycohydrolase model of excystation.National Institutes of Health (AI048082, AI44070, GM31318, RR1088
Titan's Aerosol and Stratospheric Ice Opacities Between 18 and 500 Micrometers: Vertical and Spectral Characteristics from Cassini CIRS
Vertical distributions and spectral characteristics of Titan's photochemical aerosol and stratospheric ices are determined between 20 and 560 per centimeter (500-18 micrometers) from the Cassini Composite Infrared Spectrometer (CIRS). Results are obtained for latitudes of 15 N, 15 S, and 58 S, where accurate temperature profiles can be independently determined. In addition, estimates of aerosol and ice abundances at 62 N relative to those at 15 S are derived. Aerosol abundances are comparable at the two latitudes, but stratospheric ices are approximately 3 times more abundant at 62 N than at 15 S. Generally, nitrile ice clouds (probably HCN and HC3N), as inferred from a composite emission feature at approximately 160 per centimeter, appear to be located over a narrow altitude range in the stratosphere centered at approximately 90 km. Although most abundant at high northern latitudes, these nitrile ice clouds extend down through low latitudes and into mid southern latitudes, at least as far as 58 S. There is some evidence of a second ice cloud layer at approximately 60 km altitude at 58 S associated with an emission feature at approximately 80 per centimeter. We speculate that the identify of this cloud may be due to C2H6 ice, which in the vapor phase is the most abundant hydrocarbon (next to CH4) in the stratosphere of Titan. Unlike the highly restricted range of altitudes (50-100 km) associated with organic condensate clouds, Titan's photochemical aerosol appears to be well-mixed from the surface to the top of the stratosphere near an altitude of 300 km, and the spectral shape does not appear to change between 15 N and 58 S latitude. The ratio of aerosol-to-gas scale heights range from 1.3-2.4 at about 160 km to 1.1-1.4 at 300 km, although there is considerable variability with latitude, The aerosol exhibits a very broad emission feature peaking at approximately 140 per centimeter. Due to its extreme breadth and low wavenumber, we speculate that this feature may be caused by low-energy vibrations of two-dimensional lattice structures of large molecules. Examples of such molecules include polycyclic aromatic hydrocarbons (PAHs) and nitrogenated aromatics. Finally, volume extinction coefficients N chi EPSILON derived from 15 S CIRS data at a wavelength of lambda = 62.5 micrometers are compared with those derived from the 10 S Huygens Descent Imager/Spectral Radiometer (DISR) data at 1.583 micrometers. This comparison yields volume extinction coefficient ratios N chi EPSILON (1.583 micrometers)/N chi EPSILON (62.5 micrometers) of roughly 70 and 20, respectively, for Titan's aerosol and stratospheric ices, The inferred particle cross-section ratios chi EPSILON(1.583 micrometers)/chi EPSILON (62.5 micrometers) appear to be consistent with sub-micron size aerosol particles, and effective radii of only a few microns for stratospheric ice cloud particles
Volatility and dividend risk in perpetual American options
American options are financial instruments that can be exercised at any time
before expiration. In this paper we study the problem of pricing this kind of
derivatives within a framework in which some of the properties --volatility and
dividend policy-- of the underlaying stock can change at a random instant of
time, but in such a way that we can forecast their final values. Under this
assumption we can model actual market conditions because some of the most
relevant facts that may potentially affect a firm will entail sharp predictable
effects. We will analyse the consequences of this potential risk on perpetual
American derivatives, a topic connected with a wide class of recurrent problems
in physics: holders of American options must look for the fair price and the
optimal exercise strategy at once, a typical question of free absorbing
boundaries. We present explicit solutions to the most common contract
specifications and derive analytical expressions concerning the mean and higher
moments of the exercise time.Comment: 21 pages, 5 figures, iopart, submitted for publication; deep
revision, two new appendice
Quantum point contact due to Fermi-level pinning and doping profiles in semiconductor nanocolumns
We show that nanoscale doping profiles inside a nanocolumn in combination
with Fermi-level pinning at the surface give rise to the formation of a
saddle-point in the potential profile. Consequently, the lateral confinement
inside the channel varies along the transport direction, yielding an embedded
quantum point contact. An analytical estimation of the quantization energies
will be given
- …
