American options are financial instruments that can be exercised at any time
before expiration. In this paper we study the problem of pricing this kind of
derivatives within a framework in which some of the properties --volatility and
dividend policy-- of the underlaying stock can change at a random instant of
time, but in such a way that we can forecast their final values. Under this
assumption we can model actual market conditions because some of the most
relevant facts that may potentially affect a firm will entail sharp predictable
effects. We will analyse the consequences of this potential risk on perpetual
American derivatives, a topic connected with a wide class of recurrent problems
in physics: holders of American options must look for the fair price and the
optimal exercise strategy at once, a typical question of free absorbing
boundaries. We present explicit solutions to the most common contract
specifications and derive analytical expressions concerning the mean and higher
moments of the exercise time.Comment: 21 pages, 5 figures, iopart, submitted for publication; deep
revision, two new appendice