457 research outputs found

    Fuel injector: Air swirl characterization aerothermal modeling, phase 2, volume 1

    Get PDF
    A well integrated experimental/analytical investigation was conducted to provide benchmark quality relevant to a prefilming type airblast fuel nozzle and its interaction with the combustor dome air swirler. The experimental investigation included a systematic study of both single-phase flows that involved single and twin co-axial jets with and without swirl. A two-component Phase Doppler Particle Analyzer (PDPA) was used to document the interaction of single and co-axial air jets with glass beads that simulate nonevaporating spray and simultaneously avoid the complexities associated with fuel atomization processes and attendant issues about the specification of relevant boundary conditions. The interaction of jets with methanol spray produced by practical airblast nozzle was also documented in the spatial domain of practical interest. Model assessment activities included the use of three turbulence models (k-epsilon, algebraic second moment (ASM), and differential second moment (DSM)) for the carrier phase, deterministic or stochastic Lagrangian treatment of the dispersed phase, and advanced numerical schemes. Although qualitatively good comparison with data was obtained for most of the cases investigated, the model deficiencies in regard to modeled dissipation rate transport equation, single length scale, pressure-strain correlation, and other critical closure issues need to be resolved before one can achieve the degree of accuracy required to analytically design combustion systems

    Aerothermal modeling program, phase 2. Element C: Fuel injector-air swirl characterization

    Get PDF
    The main objectives of the NASA-sponsored Aerothermal Modeling Program, Phase 2--Element C, are experimental evaluation of the air swirler interaction with a fuel injector in a simulated combustor chamber, assessment of the current two-phase models, and verification of the improved spray evaporation/dispersion models. This experimental and numerical program consists of five major tasks. Brief descriptions of the five tasks are given

    Aerothermal modeling program, Phase 2, Element C: Fuel injector-air swirl characterization

    Get PDF
    The main objectives of the NASA sponsored Aerothermal Modeling Program, Phase 2, Element C, are to collect benchmark quality data to quantify the fuel spray interaction with the turbulent swirling flows and to validate current and advanced two phase flow models. The technical tasks involved in this effort are discussed

    Optimization of circular orifice jets mixing into a heated cross flow in a cylindrical duct

    Get PDF
    To examine the mixing characteristics of circular jets in an axisymmetric can geometry, temperature measurements were obtained downstream of a row of cold jet injected into a heated cross stream. The objective was to obtain uniform mixing within one duct radius downstream of the leading edge of the jet orifices. An area weighted standard deviation of the mixture fraction was used to help quantify the degree of mixedness at a given plane. Non-reacting experiments were conducted to determine the influence of the number of jets on the mixedness in a cylindrical configuration. Results show that the number of orifices significantly impacts the mixing characteristics of jets injected from round hole orifices in a can geometry. Optimum mixing occurs when the mean jet trajectory aligns with the radius which divides the cross sectional area of the can into two equal parts at one mixer radius downstream of the leading edge of the orifice. The optimum number of holes at momentum-flux ratios of 25 and 52 is 10 and 15 respectively

    Quick-Mixing Studies Under Reacting Conditions

    Get PDF
    The low-NO(x) emitting potential of rich-burn/quick-mix/lean-burn )RQL) combustion makes it an attractive option for engines of future stratospheric aircraft. Because NO(x) formation is exponentially dependent on temperature, the success of the RQL combustor depends on minimizing high temperature stoichiometric pocket formation in the quick-mixing section. An experiment was designed and built, and tests were performed to characterize reaction and mixing properties of jets issuing from round orifices into a hot, fuel-rich crossflow confined in a cylindrical duct. The reactor operates on propane and presents a uniform, non-swirling mixture to the mixing modules. Modules consisting of round orifice configurations of 8, 9, 10, 12, 14, and 18 holes were evaluated at a momentum-flux ratio of 57 and jet-to-mainstream mass-flaw ratio of 2.5. Temperatures and concentrations of O2, CO2, CO, HC, and NO(x) were obtained upstream, down-stream, and within the orifice plane to determine jet penetration as well as reaction processes. Jet penetration was a function of the number of orifices and affected the mixing in the reacting system. Of the six configurations tested, the 14-hole module produced jet penetration close to the module half-radius and yielded the best mixing and most complete combustion at a plane one duct diameter from the orifice leading edge. The results reveal that substantial reaction and heat release occur in the jet mixing zone when the entering effluent is hot and rich, and that the experiment as designed will serve to explore satisfactorily jet mixing behavior under realistic reacting conditions in future studies

    Design Concepts for Co-Production of Power, Fuels & Chemicals Via Coal/Biomass Mixtures

    Get PDF
    The overall goal of the program is to develop design concepts, incorporating advanced technologies in areas such as oxygen production, feed systems, gas cleanup, component separations and gas turbines, for integrated and economically viable coal and biomass fed gasification facilities equipped with carbon capture and storage for the following scenarios: (i) coproduction of power along with hydrogen, (ii) coproduction of power along with fuels, (iii) coproduction of power along with petrochemicals, and (iv) coproduction of power along with agricultural chemicals. To achieve this goal, specifically the following objectives are met in this proposed project: (i) identify advanced technology options and innovative preliminary design concepts that synergistically integrate plant subsections, (ii) develop steady state system simulations to predict plant efficiency and environmental signature, (iii) develop plant cost estimates by capacity factoring major subsystems or by major equipment items where required, and then capital, operating and maintenance cost estimates, and (iv) perform techno- economic analyses for the above described coproduction facilities. Thermal efficiencies for the electricity only cases with 90% carbon capture are 38.26% and 36.76% (HHV basis) with the bituminous and the lignite feedstocks respectively. For the coproduction cases (where 50% of the energy exported is in the form of electricity), the electrical efficiency, as expected, is highest for the hydrogen coproduction cases while lowest for the higher alcohols (ethanol) coproduction cases. The electrical efficiencies for Fischer-Tropsch coproduction cases are slightly higher than those for the methanol coproduction cases but it should be noted that the methanol (as well as the higher alcohol) coproduction cases produce the finished coproduct while the Fischer-Tropsch coproduction cases produce a coproduct that requires further processing in a refinery. The cross comparison of the thermal performance between the various coproduct cases is further complicated by the fact that the carbon footprint is not the same when carbon leaving with the coproduct are accounted for. The economic analysis and demand for a particular coproduct in the market place is a more meaningful comparison of the various coproduction scenarios. The first year cost of electricity calculated for the bituminous coal is 102.9/MWhwhilethatfortheligniteis102.9/MWh while that for the lignite is 108.1/MWh. The calculated cost of hydrogen ranged from 1.42/kgto1.42/kg to 2.77/kg depending on the feedstock, which is lower than the DOE announced hydrogen cost goal of 3.00/kginJuly14,2005.Methanolcostrangedfrom3.00/kg in July 14, 2005. Methanol cost ranged from 345/MT to 617/MT,whilethemarketpriceisaround617/MT, while the market price is around 450/MT. For Fischer-Tropsch liquids, the calculated cost ranged from 65/bblto65/bbl to 112/bbl, which is comparable to the current market price of crude oil at around 100/bbl.Itshouldbenoted,however,thatFTliquidscontainnosulfurandnitrogencompounds.Thecalculatedcostofalcoholrangedfrom100/bbl. It should be noted, however, that F-T liquids contain no sulfur and nitrogen compounds. The calculated cost of alcohol ranged from 4.37/gal to 5.43/gal,whileitrangedfrom5.43/gal, while it ranged from 2.20/gal to 3.70/galinaDOEfundedstudyconductedbyLouisianaStateUniversity.TheLouisianaStateUniversitystudyconsistedofasignificantlylargerplantthanourstudyandbenefitedfromeconomiesofscale.WhentheplantsizeinourstudyisscaleduptosimilarsizeasintheLouisianaStateUniversitystudy,costofalcoholisthenreducedtoarangeof3.70/gal in a DOE funded study conducted by Louisiana State University. The Louisiana State University study consisted of a significantly larger plant than our study and benefited from economies of scale. When the plant size in our study is scaled up to similar size as in the Louisiana State University study, cost of alcohol is then reduced to a range of 3.24/gal to 4.28/gal,whichiscomparable.Ureacostrangedfrom4.28/gal, which is comparable. Urea cost ranged from 307/MT to 428/MT,whilethemarketpriceisaround428/MT, while the market price is around 480/MT

    Aerothermal modeling program, phase 2

    Get PDF
    The main objectives of the Aerothermal Modeling Program, Phase 2 are: to develop an improved numerical scheme for incorporation in a 3-D combustor flow model; to conduct a benchmark quality experiment to study the interaction of a primary jet with a confined swirling crossflow and to assess current and advanced turbulence and scalar transport models; and to conduct experimental evaluation of the air swirler interaction with fuel injectors, assessments of current two-phase models, and verification the improved spray evaporation/dispersion models

    Optimization of Jet Mixing Into a Rich, Reacting Crossflow

    Get PDF
    Radial jet mixing of pure air into a fuel-rich, reacting crossflow confined to a cylindrical geometry is addressed with a focus on establishing an optimal jet orifice geometry. The purpose of this investigation was to determine the number of round holes that most effectively mixes the jets with the mainstream flow, and thereby minimizes the residence time of near-stoichiometric and unreacted packets. Such a condition might reduce pollutant formation in axially staged, gas turbine combustor systems. Five different configurations consisting of 8, 10, 12, 14, and 18 round holes are reported here. An optimum number of jet orifices is found for a jet-to-mainstream momentum-flux ratio (J) of 57 and a mass-flow ratio (MR) of 2.5. For this condition, the 14-orifice case produces the lowest spatial unmixedness and the most uniformly-distributed species concentrations and temperature profiles at a plane located one duct diameter length from the jet orifice inlet

    The fear of bad smell: Health risk awareness related to using waste in agricultural production in Vietnam

    Get PDF
    Waste watersWater reuseAgricultural productionFish farmingIrrigation waterPublic healthRisksSkin diseasesOrganic fertilizersWomen
    corecore