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Abstract 
We present theoretical and experimental results on the 

effect of periodic perturbations on microwave-driven Joseph- 
son tunnel junctions close to a period-doubling bifurcation. 
The theory, which is quite general, describes how a periodic 
near-resonant perturbation changes the stability of the system. 
The phenomenon was investigated experimentally in small 
Nb-NbOx-Pb tunnel junctions and found to be in agreement 
with the theory. The effect has importance for the perfor- 
mance of parametric amplifiers based on Josephson tunnel 
junctions. 

Introduction 
The period-doubling bifurcation is a type of bifurcation com- 
monly found in many biological, chemical, electrical, hydro- 
dynamical, and optical systems. We here address the impor- 
tant question of the stability of a period-doubling bifurcation 
in the presence of perturbations with application to the 
Josephson tunnel junction'-5. We regard this analysis of the 
non-linear dynamics as a new way of describing the action of 
the Josephson parametric amplifier, a microwave device 
which has attracted renewed interest after recent reports on 
substantial improvements in performancec7. 

Theoretical fnodel 
This section summarizes the theory on the stability of the 
asymptotic behavior of a dynamical system which is close to 
a period-doubling bifurcation. A more thorough treatment is 
found in Refs. (9) and (10). 

A general n-dimensional dynamical system is assumed 
to be modelled by the following set of differential equations: 

X = f ,,(x, t )  + s ( t )  + n ( t )  , 
( X , t ) E  Rn x i ,  p €  I (1) 

where f ,,( . , t )  = f ,,( . , t + T o )  is periodic with the period 
To.  p is a control parameter which is defined in some inter- 
val I. ~ ( t )  and n ( t )  are a small signal (periodic perturbation) 
and a small noise term (stochastic perturbation), respectively. 
The period of the signal is denoted T, and the corresponding 
frequency os = 2x/Ts. The noise term n ( t )  is assumed to be 
"white" defined by <n ( t )n  ( I  + T)> = o2 S(T) and <n (t)> = 0. 
I s ( t ) l  and In(t)l aresmallcomparedto I f p ( x  . t ) I .  

The unperturbed system is assumed to be close to a 
period-doubling bifurcation. By increasing the control param- 
eter, the response will change from a periodic solution with 
period To to a periodic solution of period 2To. The value 
of the control parameter for which this happens is called the 
bifurcation point. 

The essential properties of a period-doubling bifurcation 
are: 1) at the bifurcation point the dynamics is confined to a 
surface in phase space called the center manifold; and 2) for 
a period-doubling bifurcation the center manifold is a two 
dimensional surface topologically equivalent to a Miibius 
band. 

Following Ref.@) we assume that close to the bifurca- 
tion point the dynamics in phase space are also confined to 
the center manifold. This means that the dynamics can be 
described by the following Poincare' map, regardless of the 
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original dimension of the dynamical system: 

(2) 
If p is below the bifurcation point, the dynamical system 
given by Eq.(l) has a periodic solution of period T , which 
in the Poincare' map corresponds to a fix point x ? ~ .  It is 
clear that the stability of the fix point reflects the stability of 
the periodic solution. The stability of the unperturbed 
dynamical system is therefore analyzed by linearizing the 
Poincare' map around the fix point. 

If we now allow a small periodic perturbation with the 
frequency cos (the term ~ ( f )  in Eq.(l)) the function P,(x,)  in 
the Poincar; map (Eq.(2)) will change, since the terms on the 
right hand side of Eq.(l) no longer have the period To. So 
the Poincari map becomes 

(3) 
Since the perturbation is small the change in the Poin- 

care' map may be written as 

(4) 
where the first term, P p  , is the unperturbed Poincare' map 
and the second term, Afn,  is a small correction due to the 
perturbation. This last term changes for each iteration but 
has to be a periodic function which changes for integer inter- 
vals of T, according to the right hand side of Eq.(l). 

At a given instant of time, the phase angles for the two 
first terms on the right hand side of Eq.(l) can be viewed as 
coordinates on a torus 
(qo,qs) = (coo t mod ~ A , w ,  t mod 2x) ,  as seen in Fig. 
1, which illustrates the important case where the ratio OD/O, 

is close to E. After each iteration the phase angle will pro- 
gress by x6. This example is easily generalized to any ratio 
of oo/ws with 6 given by 

where k is an integer chosen such that -% < 6 < %, and 6 is 

xn+l  = Pp(xn) 3 xn E R ,  P E I .  

x n  + 1 = Pn,p(xn 1. 

x, + 1 = P y x n )  + APn(xn - x f i ' ) ,  

6 = 2 (w,/wg) - k , ( 5 )  

Figure 1. The dynamics in phase-spacc for the case k=l where 
Os /OD E. 6 is thc dctuning between Ws and %OD. The 
motion in a Poincak section is also shown. 
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therefore always measured with respect to the nearest reso- 
nance frequency, os Iw, = 112, 1, 312, 

fix points is described by the following complex equation 

kn+l = (h + (-l)&A1 e i  R*)cn + (-l)&A0 e i  Rns , (6) 
where 6, is the deviation from the fix point on the center 
manifold. Here A,  and A ,  are constants which are small 
compared to 1, and are assumed to be proportional to the 
amplitude of the perturbation s (t  ) in Eq. (1). 

The solutions to this equation define the resonances in 
the system. There is one fix point for even k and two for odd 
k .  

The stability of the fix points may now be evaluated. 
The way to do this is to look at the asymptotic behavior 
around the fix point(s). The deviation from the fix point is 
defined as Aqn = qn - qfix. This leads to the following 
equation for the asymptotic behavior: 
Aqn+, = (h e-rrr6 + (-l)& A l)Aqn. 

separately. 

The fix point is stable if I (h  e-iaS + (-l)& A 1) I < 1. At the 
verge of stability we have - h - A lcosrc6 = 1 where h is the 
eigenvalue corresponding to the fix point ( h = - 1 at the 
unperturbed bifurcation point). For h = - 1 - p, where p is 
a bifurcation parameter, we get the an expression for the shift 
of the original bifurcation point, A p  = p - PO, 

It can be shown that the asymptoti 

(Ref4911 

The two cases 1) k even and 2) k odd will be treated 

I) k even: 

A p  = A ,cosx6 (7) 
A is proportional to the amplitude of the periodic perturba- 
tion. The change in stability therefore depends on the sign of 
the amplitude and thereby on the phase of the perturbation. 
We see that it is not possible to make a definite prediction 
for the change of stability when the periodic perturbation is 
close in frequency to the resonance frequencies 
wS/wD = 1, 2, 3, . . . . ( k  even). 

2 )  k odd: In this case the sign of A l  changes for each 
iteration so the stability has to be investigated for every other 
iteration. The criterion for stability becomes 

I h2 e-i2R6 + A2')1 < 1. Again, at the verge of stability: 

the shift of the bifurcation point 
h 1 - A2'cos2rc6 = 1. This'leads to the following equation for 

A p  = A ~ 0 ~ 2 x 6  (8) 
From this we get the important result: When the 

periodic perturbation is close in uency to the resonance 
frequencies wslw, = 112, 1, 312, , a periodic perturba- 
tion will always stabilize the system against a period- 
doubling bifurcation, with a shift of the bifurcation point pro- 
portional to the square of the amplitude of the perturbation. 
Increasing the detuning 6 diminishes the effect, i.e. A p  
decreases for increasing 6.  

Another important property of a period-doubling 
bifurcation is its ability to amplify perturbations. Moving 

close to the bifurcation point, the fix points will move far 
away from the original unperturbed fix point which 
corresponds to a dynamic amplifying process or a resonance 
in the dynamical system: h = (1 + A ?)cos2x6 yielding 
2Ap = A - 2 ( ~ 6 ) ~ .  In general the resonance differs a little 
from the bifurcation (see Eqs.(7) and (8)). 

We note that the bifurcation signal will be at the fre- 
quency 0 ~ 1 2 ,  while the resonance will be at os. Due to the 
non-linearity the signal at wD (when close to ~ ~ 1 2 )  will cou- 
ple to W ~ 1 2 ,  in particular in the presence of noise. In the 
power spectrum around the period-doubled signal, the reso- 
nance will always appear at a value of p below the bifurca- 
tion point, thereby making it impossible to observe the actual 
bifurcation by this method. 

Numerical calculations 
In order to illustrate the features of the above theory, the 
differential equation for a small microwave-driven Josephson 

tunnel junction was integrated numerically. The governing 
second order nonlinear differential equation is 

$+ ai + sin+ = aDsinwDt + assincost + i + i N ( t )  . (9) 

Here + is the quantum-mechanical phase 
difference across the junction and a is the damping parame- 
ter (a = l l a ,  where PC is the McCumber parameter for 
the junction). a, = A,/lC and as = As& are the normal- 
ized amplitudes of the driving and resonant perturbing signals 
(normalized to the critical current of the junction, I C ) .  0, 
and wD are the corresponding frequencies (normalized to the 
junction maximum plasma frequency wp = (2erC fiic )Ih 

where C is the junction capacitance). i = lDclIc is the nor- 
malized dc bias and iN = INl l c  the normalized white noise 
current that arises from the damping of the junction. We 
note that this equation also describes a driven, damped pen- 
dulum subjected to a periodic perturbating force and to a sto- 
chastic (Brownian) force term. 

In order to integrate Eq.(9) we have used a fourth order 
Runge-Kutta method with 32 points per period of the driving 
signal. The motion of + was followed over 2 5 6  periods of the 
drive and the first 128 periods were discarded in order to 
remove transients. Throughout our calculations the following 
fixed patameter values were used a = 0.2, wD = 1.6 and 
i = 0.73. a,, and as were varied. The amplitude of the 
driving force, a,, was chosen as the control parameter (p) of 
the system and it was chosen so the system would be near a 
period-doubling bifurcation. 

The results of digital calculations for o s I w ~  = Yz and 
three different values of 6 are shown in Fig. 2 (here we 
neglect iN (t )). The shift of the bifurcation point as measured 
by the change in the drive amplitude, a,, is plotted versus 
the perturbation amplitude, as. From Fig. 2 it is seen that for 
the calculated values the quadratic scaling law predicted by 
Eq.(8), AUD = a:, holds as long as the perturbation ampli- 
tude is small. Above a certain level of perturbation which 
depends on the relative detuning, 6, the relationship between 
a, and a, becomes almost linear. 

Analog simulations of Eq.(9) (using a Magerlein type 
analog circuit) confirmed the quadratic scaling. We also used 
analog simulations to investigate how variations in the rela- 
tive detuning tuning, 6, affect the perturbation amplitude 
which is necessary in order to produce a constant small shift 
of the bifurcation. The results confirmed the prediction of 
Eq.(8): a, = 6 for fixed Ap. 

Figure 2. Results of numerical calculations for the change in the 
drive amplitude necessary to reach the bifurcation point, AAD, 
versus the perturbation amplitude for three values of the relative 
detuning, %/OD: circles -11256 ; triangles -11128 and squares 
-1164. The fitted lines have slopes of 2 and 1. 
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Experimental results on Josephson junctions 
Experimental technique: 
The experiments were carried out on Nb-NbOx-Pb tunnel 
junctions of the overlap type. The junction areas were about 
30x30 pm2 with capacitances around 90 pF, maximum 
plasma frequencies, 0,/2x, in the range 10 to 25 GHz, and 
Josephson penetration depth, XJ = 50-120 pm2 (the junction 
dimensions were small compared to XJ). 

In order to minimize the effect of room temperature 
noise and interference from external noise sources on the 
junction, all leads connected to the junction were carefully 
shielded and filtered. The ambient magnetic field was reduced 
to a few milligauss by two concentric shields of high permea- 
bility metal (p-metal) around the cryostat. A small magnetic 
field generated by a copper wire-wound solenoid could be 
applied in the plane of the junction in order to be able to 
vary IC and thereby o . The entire experimental set-up was 
placed in an rf-shieldecfroom. 

The microwave coupling to the junction was established 
by an inverted microstrip structure (Fig. 3). The glass sub- 
strate with the junction and its coupling circuit was mounted 
in a temperature-stabilized metal box with a large heat capa- 
city which in turn was placed in a vacuum can immersed in a 
pressure-regulated liquid-helium bath. The temperature of the 
junction could be held constant to within f 10 @. 

The junction was driven by a monochromatic 
microwave signal, AD sinOD t , from a synthesizer source in 
the frequency range 16-20 GHz (line-width < 100 Hz) cou- 
pled to the junction through a direct inverted microstrip line 
seen in Fig. 3. A possible period-doubled (half-harmonic) sig- 
nal generated in the junction (near the plasma frequency) was 
coupled out through the same microstrip connection to a low- 
noise field-effect transistor (FET) amplifier which was fol- 
lowed by a digital storage spectrum analyzer (with a 
minimum resolution bandwidth of 100 Hz). To avoid satura- 
tion of the amplifier by the pump signal, low-pass filters were 
inserted between the junction and the amplifier. 

The perturbation signal, Assinwst , generated in a 
second microwave source was coupled into the junction via 
an "L"-shaped microstrip antenna line (see Fig. 3). The fre- 
quency of the perturbation signal was slightly detuned (by 50 
kHz to 100 MHz) from the period-doubled signal frequency 
at ?h CO,. Since 'h CO, = 10 GHz the relative detuning was 
therefore in the range 5 x The line-width of 
the perturbation signal was 2 kHz. 

The microwave coupling to the junction was investi- 
gated by using the junction itself as a detector. The suppres- 
sion of the critical current of the junction was measured as a 

to 5 x 

1 " 

Figure 3. Sample geometry including the microwave coupling cu- 
cuit and the overlap Nb-NbOx-Pb 30 x 30 pm2 Josephson tunnel 
junction. A copper ground plane is placed app. 4oi) pm above the 
glass substrate with the Nb thin-film microstrip circuit. The contact 
pads for the dc bias leads are also shown. 

function of the frequency and the power applied from the two 
sources. From such measurements we deduced that the 
microwave coupling both in the vicinity of the pump fre- 
quency and of its half-harmonic was strongly frequency 
dependent but always weak. By a comparison between the 
measured values of the critical current of the junction as a 
function of the applied microwave power, lc(AD) and 
IC (As), and the results of numerical simulations based on the 
resistively-shunted junction model including noise (Eq.(9)) 
we were able to determine the amplitude of the microwave 
currents through the junction, AD and As. 

In order to characterize the white noise term ( IN( t )  in 
Eq.(9)), the effective noise temperature affecting the junction 
was measured in situ by recording the noise-perturbed distri- 
bution of the critical current for a large number of switching 
events,P ( I c ) ,  in a low-noise data acquisition system (the 
switching was induced by sweeping the dc bias thereby trac- 
ing out the hysteretic I-V curve of the junction). Assuming a 
white noise spectrum such a measurement of the noise 
currents (primarily around the junction plasma frequency) 
yielded an effective noise temperature of 12 K at a bath tem- 
perature of 4.2 K. 

Experimental results: 
The stabilizing effect of a near-resonant periodic perturbation 
was clearly observed. The qualitative features of such an 
observation are seen in Fig. 4, where amplitude-frequency 
recordings from the spectrum analyzer are shown as a func- 
tion of dc-bias (for fixed drive amplitude) both with and 
without an applied perturbation signal. The main characteris- 
tics of such experimental observations are: I )  the perturba- 
tion signal suppresses the period-doubled signal (the hay- 
harmonic amplitude); and 2 )  the perturbation signal is 
amplified as seen by the the appearance of an idler signal at 
the image frequency = OD - OS ( = %OD + 6 ). 

Se-, . + z  

- 
&' , , 

s-"; simp r 3 s g  "3s .-== eTqzj > ,  
"ILC..CI " * I ,  

Figure 4. Experimental data for a Nb-NbOx-Pb tunnel junction 
showing the spectrum analyzer output vs. the dc bias both (a) 
wifhoui a perturbation signal applied and (b) with an applied pertur- 
bation signal detuned by -0.1 M H z  from %OD = 27t 8709.000 MHz. 

The maximum amplitudes at %OD and at the idler (image) 
frequency at 8709.100 MHz are also shown as functions of the dc 
bias. Both the suppression of the half-harmonic signal and the 
amplification are seen in this figure. 

1 
_ _  
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We note that the microwave set-up used in this work 
did not provide isolation between the input and the output of 
the junction and we have therefore not been able to measure 
the amplification in the system. The appearance of the idler 
signal is, however, indicating that the junction is working as 
an amplifier. 

Figure 5 shows how the onset of the period-doubled sig- 
nal is shifted towards higher values of the drive amplitude 
when the amplitude of the perturbation signal is increased, 
i.e. the bifurcation point is moved towards larger AD values. 

To find a possible characteristic scaling behavior of the 
shift of the bifurcation point we again use the amplitude of 
the drive signal as the non-linearity parameter, p. From the 
experimental curves like the set reproduced in Fig. 5 we cal- 
culate the shift of the bifurcation point, Ap = AAD as a func- 
tion of the perturbation amplitude, A,. 

In Fig. 6 the bifurcation point shift found in this way is 

POWER (dBrn) 

AMPLITUDE AD& 
0 4  0 5  0 6  07 0 8  

Figure 5. Smoothed experimental recordings of the half-harmonic 
amplitude (lin. scale) versus the normalized drive amplitude, 
AD / I C ,  for a number of different values of the normalized pertur- 
bation signal amplitude, As / I C .  The dc bias is constant. po is the 
unperturbed bifurcation point, i.e. the threshold for the onset of the 
perioddoubled signal (the half-harmonic) without perturbation. 

S-5001 

1 
-30 - 2  

10 Log ( AsNc ’) 

Figure 6. Experimental data for a Nb-NbOx-Pb tunnel junction at 
4.2 K. The log-log plot shows the measured scaling behavior of the 
shift of the bifurcation point (as defined by the minimum drive 
amplitude for which the period-doubled signal is observed, see Fig. 
5) as a function of the normalized perturbation amplitude, A, / I c ,  
for three different values of the detuning, 6: squares 0.1 MHz; cir- 
cles 10 MHz and triangles 40 MHz. The value of %6$,/2 is 
2rC . 8709.000 MHz. The three straight lines are leastsquares fits 
to the data points. The slopes give the following scaling exponent: 
squares 1 .O circles 1.6 and triangles 2.1. 

plotted versus the perturbation amplitude for three different 
values of the frequency detuning. From such double- 
logarithmic plots we have found a linear Ap vs. A, depen- 
dence for small detunin 4 and a quadratic scaling behavior for 
large detuning: Ap = A, .  

Finally, for fixed 6 we have investigated how the neces- 
sary perturbation amplitude depends on the detuning. It turns 
out that such measurements are very difficult to perform on a 
Josephson junction due to the strong frequency dependence 
of the microwave coupling to the junction. Technically it is 
not easy to vary the perturbation frequency over a wide band, 
say from 0.1 MHz to 100 MHz (corresponding to a relative 
detuning from to without strongly varying the per- 
turbation amplitude in the junction. We have therefore not at 
present been able to test the theoretical prediction for the 
scaling law for A, (6) for fixed AAD . 

Discussion and conclusion 

The stabilization of a near-resonant perturbation signal 
against the onset of a period-doubling bifurcation which is 
predicted by the theory and c o n b e d  through numerical cal- 
culations and analog simulations has been observed in small 
Josephson tunnel junctions biased on the supercurrent. 

Theoretically, the strength of this stabilization which 
may be characterized by the shift of the bifurcation point has 
been shown to depend on the perturbation amplitude accord- 
ing to a characteristic quadratic scaling law, i.e. AF = A:, 
where we have used the change in the drive amplitude, MD , 
as a measure of the shift of the bifurcation point (i.e. we use 
AD as the non-linearity parameter of the system). 

In the experiments the shift in the bifurcation point was 
measured by the change of the minimum value of the drive 
amplitude for which a period-doubled signal could be 
observed above the background noise level in the system 
(Fig. 5 ) .  This shift was found to scale linearly with the per- 
turbation amplitude for small frequency detuning and qua- 
dratically for large detuning of the perturbation signal (Fig. 
6) .  The same behavior was found in the numerical calcula- 
tions (Fig. 2). For small values of the detuning, the relative 
perturbation becomes large, and non-linear effect will dom- 
inate and the theory breaks down. For small values of the 
relative perturbation amplitude the theory can be applied, and 
good agreement between the theoretical prediction and exper- 
imental results is found Ap - A:. 
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