142 research outputs found

    Evidence for impurity-induced frustration in La2CuO4

    Full text link
    Zero-field muon spin rotation and magnetization measurements were performed in La2Cu{1-x}MxO4, for 0<x< 0.12, where Cu2+ is replaced either by M=Zn2+ or by M=Mg2+ spinless impurity. It is shown that while the doping dependence of the sublattice magnetization (M(x)) is nearly the same for both compounds, the N\'eel temperature (T_N(x)) decreases unambiguously more rapidly in the Zn-doped compound. This difference, not taken into account within a simple dilution model, is associated with the frustration induced by the Zn2+ impurity onto the Cu2+ antiferromagnetic lattice. In fact, from T_N(x) and M(x) the spin stiffness is derived and found to be reduced by Zn doping more significantly than expected within a dilution model. The effect of the structural modifications induced by doping on the exchange coupling is also discussed.Comment: 4 pages, 4 figure

    Tuning the magnetic and structural phase transitions of PrFeAsO via Fe/Ru spin dilution

    Full text link
    Neutron diffraction and muon spin relaxation measurements are used to obtain a detailed phase diagram of Pr(Fe,Ru)AsO. The isoelectronic substitution of Ru for Fe acts effectively as spin dilution, suppressing both the structural and magnetic phase transitions. The temperature of the tetragonal-orthorhombic structural phase transition decreases gradually as a function of x. Slightly below the transition temperature coherent precessions of the muon spin are observed corresponding to static magnetism, possibly reflecting a significant magneto-elastic coupling in the FeAs layers. Short range order in both the Fe and Pr moments persists for higher levels of x. The static magnetic moments disappear at a concentration coincident with that expected for percolation of the J1-J2 square lattice model

    PULSEE: A software for the quantum simulation of an extensive set of magnetic resonance observables

    Get PDF
    We present an open-source software for the simulation of observables in magnetic resonance experiments, including nuclear magnetic/quadrupole resonance NMR/NQR and electron spin resonance (ESR), developed to assist experimental research in the design of new strategies for the investigation of fundamental quantum properties of materials, as inspired by magnetic resonance protocols that emerged in the context of quantum information science (QIS). The package introduced here enables the simulation of both standard NMR spectroscopic observables and the time-evolution of an interacting single-spin system subject to complex pulse sequences, i.e. quantum gates. The main purpose of this software is to facilitate in the development of much needed novel NMR-based probes of emergent quantum orders, which can be elusive to standard experimental probes. The software is based on a quantum mechanical description of nuclear spin dynamics in NMR/NQR experiments and has been widely tested on available theoretical and experimental results. Moreover, the structure of the software allows for basic experiments to easily be generalized to more sophisticated ones, as it includes all the libraries required for the numerical simulation of generic spin systems. In order to make the program easily accessible to a large user base, we developed a user-friendly graphical interface, Jupyter notebooks, and fully-detailed documentation. Lastly, we portray several examples of the execution of the code that illustrate the potential of a novel NMR paradigm, inspired by QIS, for efficient investigation of emergent phases in strongly correlated materials.Comment: 51 page

    Mutual independence of critical temperature and superfluid density under pressure in optimally electron-doped superconducting LaFeAsO1−x_{1-x}Fx_{x}

    Get PDF
    The superconducting properties of LaFeAsO1−x_{1-x}Fx_{x} in conditions of optimal electron-doping are investigated upon the application of external pressure up to ∌23\sim 23 kbar. Measurements of muon-spin spectroscopy and dc magnetometry evidence a clear mutual independence between the critical temperature TcT_{c} and the low-temperature saturation value for the ratio ns/m∗n_{s}/m^{*} (superfluid density over effective band mass of Cooper pairs). Remarkably, a dramatic increase of ∌30\sim 30 % is reported for ns/m∗n_{s}/m^{*} at the maximum pressure value while TcT_{c} is substantially unaffected in the whole accessed experimental window. We argue and demonstrate that the explanation for the observed results must take the effect of non-magnetic impurities on multi-band superconductivity into account. In particular, the unique possibility to modify the ratio between intra-band and inter-bands scattering rates by acting on structural parameters while keeping the amount of chemical disorder constant is a striking result of our proposed model.Comment: 8 pages (Main text: 5 pages. Paper merged with supplemental information), 5 figure

    Strain-tuning of nematicity and superconductivity in single crystals of FeSe

    Full text link
    Strain is a powerful experimental tool to explore new electronic states and understand unconventional superconductivity. Here, we investigate the effect of uniaxial strain on the nematic and superconducting phase of single crystal FeSe using magnetotransport measurements. We find that the resistivity response to the strain is strongly temperature dependent and it correlates with the sign change in the Hall coefficient being driven by scattering, coupling with the lattice and multiband phenomena. Band structure calculations suggest that under strain the electron pockets develop a large in-plane anisotropy as compared with the hole pocket. Magnetotransport studies at low temperatures indicate that the mobility of the dominant carriers increases with tensile strain. Close to the critical temperature, all resistivity curves at constant strain cross in a single point, indicating a universal critical exponent linked to a strain-induced phase transition. Our results indicate that the superconducting state is enhanced under compressive strain and suppressed under tensile strain, in agreement with the trends observed in FeSe thin films and overdoped pnictides, whereas the nematic phase seems to be affected in the opposite way by the uniaxial strain. By comparing the enhanced superconductivity under strain of different systems, our results suggest that strain on its own cannot account for the enhanced high TcT_c superconductivity of FeSe systems.Comment: 11 pages, 8 figure

    Anomalous local lattice disorder and distortion in A2Mo2O7 pyrochlores

    Get PDF
    We present an extended X-ray absorption fine structure study of the pyrochlores A2Mo2O7 (A ÂŒ Gd, Dy, Ho, Er), as a function of temperature. While in the three spin-glass compositions Dy2Mo2O7, Ho2Mo2O7 and Er2Mo2O7 the Debye temperatures are in accordance with other pyrochlores and the static disorder contributions are compatible with a lattice frustration, in the low-temperature-ferromagnetic Gd2Mo2O7 system we point out an anomalous enhancement of the local structure disorder below about 225 K down to low temperatures. Moreover, considering the general pyrochlore predisposition towards structural disorder, we prove the presence on a local scale of at least a bimodal distribution of the Mo-O(1) octahedral interatomic distances for all the studied compounds, consisting of two shorter and four longer bond lengths. Our results suggest that the local structure order parameter plays an important role in the ferromagnetic or spin-glass phase stabilization.We gratefully acknowledge the Spanish CRG at the ESRF for providing beamtime under experiment HC-2414. F.R.-M. is also indebted to MINECO for a ‘Ramon y Cajal’ contract (ref: RyC-2015- 18626), which is co-financed by the European Social Fund 2014-20. G.L. thanks M. Lucaccini and G. Tavilla for their valuable technical support and C. Robustelli for the supply of cryogenic liquids during the magnetization measurements

    Magnetic properties of spin diluted iron pnictides from muSR and NMR in LaFe1-xRuxAsO

    Full text link
    The effect of isoelectronic substitutions on the microscopic properties of LaFe1-xRuxAsO, for 0< x< 0.8, has been investigated by means of muSR and 139La NMR. It was found that Ru substitution causes a progressive reduction of the N\`eel temperature (T_N) and of the magnetic order parameter without leading to the onset of superconductivity. The temperature dependence of 139La nuclear spin-lattice relaxation rate 1/T_1 can be suitably described within a two-band model. One band giving rise to the spin density wave ground-state, while the other one is characterized by weakly correlated electrons. Fe for Ru substitution yields to a progressive decrease of the density of states at the Fermi level close to the one derived from band structure calculations. The reduction of T_N with doping follows the predictions of the J_1-J_2 model on a square lattice, which appears to be an effective framework to describe the magnetic properties of the spin density wave ground-state.Comment: 6 pages, 8 figure

    Effects of charge doping on Mott insulator with strong spin-orbit coupling, Ba2Na1−xCaxOsO6

    Get PDF
    The effects of doping on the electronic evolution of the Mott insulating state have been extensively studied in efforts to understand mechanisms of emergent quantum phases of materials. The study of these effects becomes ever more intriguing in the presence of entanglement between spin and orbital degrees of freedom. Here, we present a comprehensive investigation of charge doping in the double perovskite Ba2NaOsO6, a complex Mott insulator where such entanglement plays an important role. We establish that the insulating magnetic ground state evolves from canted antiferromagnet (cAFM) [Lu et al., Nat. Commun. 8, 14407 (2017)] to Neel order for dopant levels exceeding approximate to 10%. Furthermore, we determine that a broken local point symmetry (BLPS) phase, precursor to the magnetically ordered state, occupies an extended portion of the (H-T) phase diagram with increased doping. This finding reveals that the breaking of the local cubic symmetry is driven by a multipolar order, most likely of the antiferro-quadrupolar type [Khaliullin et al., Phys. Rev. Res. 3, 033163 (2021); Churchill and Kee, Phys. Rev. B 105, 014438 (2022)]. Future dynamical measurements will be instrumental in determination of the precise nature of the identified multipolar order

    Entanglement between Muon and I &gt; 1/2 Nuclear Spins as a Probe of Charge Environment

    Get PDF
    We report on the first example of quantum coherence between the spins of muons and quadrupolar nuclei. We reveal that these entangled states are highly sensitive to a local charge environment and thus, can be deployed as a functional quantum sensor of that environment. The quantum coherence effect was observed in vanadium intermetallic compounds which adopt the A15 crystal structure, and whose members include all technologically pertinent superconductors. Furthermore, the extreme sensitivity of the entangled states to the local structural and electronic environments emerges through the quadrupolar interaction with the electric field gradient due to the charge distribution at the nuclear (I &gt;1/2) sites. This case study demonstrates that positive muons can be used as a quantum sensing tool to also probe structural and charge-related phenomena in materials, even in the absence of magnetic degrees of freedom
    • 

    corecore