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Effects of charge doping on Mott insulator with strong spin-orbit coupling, Ba2Na1−xCaxOsO6

Rong Cong ,1,* Erick Garcia,1,* Paola C. Forino ,2 Anna Tassetti ,2 Giuseppe Allodi,3 Arneil P. Reyes ,4

Phoung M. Tran,5 Patrick M. Woodward,5 Cesare Franchini,2,6 Samuele Sanna ,2,† and Vesna F. Mitrović 1,‡
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The effects of doping on the electronic evolution of the Mott insulating state have been extensively studied in
efforts to understand mechanisms of emergent quantum phases of materials. The study of these effects becomes
ever more intriguing in the presence of entanglement between spin and orbital degrees of freedom. Here, we
present a comprehensive investigation of charge doping in the double perovskite Ba2NaOsO6, a complex Mott
insulator where such entanglement plays an important role. We establish that the insulating magnetic ground state
evolves from canted antiferromagnet (cAFM) [Lu et al., Nat. Commun. 8, 14407 (2017)] to Néel order for dopant
levels exceeding ≈10%. Furthermore, we determine that a broken local point symmetry (BLPS) phase, precursor
to the magnetically ordered state, occupies an extended portion of the (H−T ) phase diagram with increased
doping. This finding reveals that the breaking of the local cubic symmetry is driven by a multipolar order, most
likely of the antiferro-quadrupolar type [Khaliullin et al., Phys. Rev. Res. 3, 033163 (2021); Churchill and Kee,
Phys. Rev. B 105, 014438 (2022)]. Future dynamical measurements will be instrumental in determination of the
precise nature of the identified multipolar order.
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I. INTRODUCTION

Intricate interplay between strong electron correlations,
and intertwined spin and orbital degrees of freedom leads
to many diverse complex quantum phases of matter [1–5].
Often, correlations of the spin and orbital degrees of freedom
can be treated on distinct energy scales. However, this is
not the case in systems containing 5d transition-metal ions,
where spin-orbit coupling (SOC) and electron correlations
are comparable in size [2,6–12]. As a result, 5d compounds
exhibit a wide range of exotic magnetic properties, structural
distortions, and multipolar ordering [1,13–21]. The under-
lying physical ground state, is controlled by the multiplet
structure of the constituent ions, the nature of the chemi-
cal bonds in the crystal, and its symmetry. This complexity
often leads to intricate quantum “hidden” orders, elusive to
most standard experimental probes. Nevertheless, the struc-
tural, magnetic, and electronic properties can be finely tuned
by altering the degeneracy of a multitude of ground states
varying external perturbations, such as pressure, strain, and
doping [20,22–24].

The expectation, under the simplest picture, is that Mott
insulators with integer number of electrons per site favor an
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antiferromagnetic ground state (AFM), and that charge doping
leads to a metal-insulator transition (MIT) into a conduct-
ing state [25]. The most notable example of doping is the
superconducting state in cuprates believed to emerge from
a parent antiferromagnetic Mott state [26–28]. Specifically,
as doping increases, antiferromagnetism gives way to exotic
orders such as “stripe”, unidirectional charge density wave,
spin-density wave, and unconventional d-wave superconduc-
tivity and with high enough doping the system becomes a
Fermi liquid [26,28,29]. In addition to this well known class
of MITs induced in Mott insulators by Coulomb interactions
[26,27,30–32], insulators purely driven by spin correlations
have been recently observed [33]. Yet another interesting case
arises in Mott insulators when a strong SOC locally entangles
the spin and orbital degrees of freedom. In such systems
unconventional quantum magnetic and multipolar orders may
emerge [2,3,16,17,22]. Furthermore, the effects of charge dop-
ing are expected to be strikingly different than in systems
where SOC can be treated as a perturbation to electronic cor-
relations [2,34–40], because multipolar orbital order and/or
complex multiorbital arrangements favor charge localization.
A representative material of such Mott insulators is the 5d1

double perovskite Ba2NaOsO6 [41,42] that evolves to the 5d2

configuration upon charge doping.
This 5d1 Os7+ Mott insulator displays a seemingly con-

tradictory combination of a weak ferromagnetic moment
(∼0.2 μB/formula unit) below TC ≈ 6.8 K and a negative
Weiss temperature [43]. Its weak moment at low-temperature
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derives from an exotic canted-antiferromagnetic (cAFM)
phase that is preceded by a broken local point symmetry
(BLPS) state [13,44,45]. Fully doped, Ba2CaOsO6, on the
other hand, is a 5d2 Os6+ Mott insulator that possibly hosts
a complex ferro-octupolar order instead of a simple Néel
AF order [16,21,21,46,47]. Interestingly, recent theoretical
work reveals different types of multipolar orders in 5d2

Mott insulators, such as ferri-octupolar [48], ferro-octupolar
[22,49], and antiferro-quadrupolar ordering [18,50]. Micro-
scopic study of the magnetic and structural properties of the
double-perovskite 5d compounds with cubic symmetry, as
presented here, provides essential guidance for the develop-
ment of the relevant theoretical framework for the description
of Mott insulators with strong SOC. Once identified, such
a theoretical framework can be extended to more intricate
lattices, such as the honeycomb and/or triangular lattice,
where novel types of exotic quantum orders can be stabilized
[2,12,50].

Here, we present a comprehensive study of the effect of
charge doping on a Mott insulator with both strong electron
correlations and SOC, represented by the double perovskite
Ba2NaOsO6, from 5d1 → 5d2. Specifically, we investigate
the magnetic field-temperature (H−T ) phase diagram evolu-
tion as a function of charge doping (x) achieved by Na+/Ca2+

heterovalent substitution in Ba2Na1−xCaxOsO6, employing
nuclear magnetic resonance (NMR), muon spin spectroscopy
(μSR), and magnetization measurement techniques. We find
that the system remains insulating at all doping levels, im-
plying that the dopants form an inhomogeneous electronic
state [23]. We compiled a magnetic and structural phase di-
agram for dopant concentrations ranging from x = 0 → 1.
We point out that in this paper we exploited 23Na nuclear
spins, which thus precluded the investigation of pure 5d2,
i.e., (x = 1), compound by NMR. The insulating magnetic
ground state evolves from canted antiferromagnetic (AF) [13]
to Néel nearly collinear AF state (hereafter referred to as
collinear AF state for brevity) for dopant levels exceeding
≈10%. Analyzing the complex broadening of the 23Na NMR
spectra, which onsets well above the magnetic transition, and
temperature dependence of NMR shift, we establish that a
cubic to orthorhombic local distortion of the O-octahedra
is present for all compositions [51,52]. The local distortion
is the signature of a BLPS phase, identified as a precursor
to the magnetic state in the single crystals of Ba2NaOsO6

[13], and not a trivial consequence of a simple structural
phase transition. The observation of the breaking of the local
cubic symmetry and concurrent development of the NMR
shift anisotropy for the entire range of dopings investigated
implies that this symmetry breaking is driven by a multipolar
order, most likely of the antiferro-quadrupolar type [18,50].
Remarkably, we find that the cubic to orthorhombic local
distortion occurs independently of the exact nature of the
low-temperature magnetic state, signaling that the presence
of canted moments is not the sole consequence of the BLPS
[53]. In summary, our findings evidence that local distortions
persist in the doped samples and that they favor the onset of
an antiferro-quadrupolar order.

In this paper, we describe details of our experimental ap-
proach and data analysis in Sec. II. More precisely, we outline
main features of μSR, magnetization, and NMR measure-

ments and their respective data analysis. In Sec. III, we present
findings of our systematic study of Ba2Na1−xCaxOsO6 and
effects of doping in the Os based Mott insulator. We discuss
physical implication of our findings in Sec. IV. Following
the main text, we provide appendices, which outline impor-
tant, but tedious, details of data analysis and modeling: the
Curie-Weiss behavior (Appendix A), hyperfine tensor form
(Appendix B), and simulations of the NMR spectra (Appen-
dices C and D).

II. EXPERIMENTAL TECHNIQUES AND MODELING
METHODS

The powder samples of Ba2Na1−xCaxOsO6 investigated
here are the same as in Ref. [23]. Powder x-ray diffraction
(PXRD) measurements were performed to test the quality
of the samples and analyzed with Rietveld refinement. The
compositional evolution of the lattice parameter is shown to
follow Vegard’s Law, indicating a successful Na/Ca substitu-
tion [23].

A. Muon spin spectroscopy - μSR

All μSR measurements were performed at the General
Purpose Surface-Muon Instrument at the Paul Scherrer In-
stitute in Switzerland. In μSR measurements, spin-polarized
muons implant in the powder samples and precess around the
local magnetic field with a frequency given by ν = γμ·|B|/2π ,
where γμ = 2π × 135.5 MHz/T. The muons decay with a
characteristic lifetime of 2.2 µs, emitting a positron, preferen-
tially along the direction of the muon spin. The positrons are
detected and counted by a forward [NF (t )] and backward de-
tector [NB(t )], as a function of time. The asymmetry function
A(t ) is given by

A(t ) = NB(t ) − αNF (t )

NB(t ) + αNF (t )
, (1)

where α is a parameter determined experimentally from the
geometry and efficiency of the μSR detectors. A(t ) is pro-
portional to the muon spin polarization, and thus reveals
information about the local magnetic field sensed by the
muons. A typical μSR spectra in zero-field (ZF) condition
(i.e., in external field H = 0) below and above the magnetic
transition temperature for Ba2Na1−xCaxOsO6 are presented
in Fig. 1(a). That is, we plot the temperature dependence of
the μSR asymmetry for x = 0 as a representative set of data.
The paramagnetic (PM) state depicted in green is observed at
the higher temperature (T = 15 K). The oscillations observed
at low temperature depict the precession of muons about
the local magnetic field deriving from long-range magnetic
ordering. The μSR spectrum at the base temperature is in a
very good agreement with previous measurements performed
on a Ba2NaOsO6 single crystal [42]. The μSR spectra for
all doping concentrations display damped oscillations at low
temperatures [Fig. 1(b)]. The appearance of these damped
oscillations marks a transition to a state of long-range mag-
netic order. Specifically, we show in Fig. 1(b) that long-range
magnetic ordering develops at low temperatures throughout
the entire doping regime. Furthermore, the nature of the
magnetic ordering is probed by magnetization and NMR
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(a)

(b)

FIG. 1. Representative zero-field μSR data. (a) Temperature evo-
lution of muon asymmetry with decreasing temperature for x = 0.
(b) Asymmetry for all doping concentrations at low temperatures
(T ∈ [1.6 K, 5 K]), well below the magnetic ordering. In this case,
the vertical axis are offset for clarity. Solid lines are results of
the asymmetry fit to Eq. (2). Blue colors denote a canted antifer-
romagnetic (cAFM), red an antiferromagnetic (AFM), and green
paramagnetic (PM) phase.

measurements, as described in Secs. III B and III C. Although
oscillations might seem insignificant, beyond approximately
1.5 microseconds, clear μSR evidence for magnetic order is
provided by the strong decay/dephasing of the signal. Indeed,
the strong decay/dephasing of the μSR signal allows us to
precisely determine the magnetic volume fractions, as we
discuss in the next paragraph.

The spectra for the end members, x = 0 and x = 1, are
in agreement with those previously reported [42,47]. Each
individual spectrum was fitted to a sum of precessing and
relaxing asymmetries given by

A(t ) =
[

2∑
i=1

Aie
− σ2

i t2

2 cos(2πνit ) + A3e− σ2
3 t2

2

]
+ A�e− t

T1 . (2)

The terms inside the brackets reflect the perpendicular com-
ponent of the internal local field probed by the spin-polarized
muons, the first term corresponds to the damped oscillatory

(a)

(b)

FIG. 2. Representative temperature dependence of zero-field
cooled magnetic susceptibility. (a) High-temperature range of
magnetic susceptibility. (b) Low-temperature range of magnetic sus-
ceptibility with linear Curie-Weiss fittings in the PM state.

muon precession about the local internal fields at frequencies
νi, while the second reflects a more incoherent precession with
a local field distribution given by σ . The term outside the
brackets reflects the longitudinal component characterized by
the relaxation rate T1. The fitting results are displayed as solid
lines in Fig. 1.

The development of a magnetic phase can be probed by
measuring the volume of magnetic and nonmagnetic regions
within our sample. This magnetic volume fraction (Vmag),
plotted in Fig. 3(a), is given by the expression

Vmag = 3

2

(
1 − A�

Atot

)
. (3)

Therefore, the magnetic volume fraction can be obtained from
the analysis and data plotted in Fig. 1, by extracting longitu-
dinal (A�) and total (Atot) component of the polarized muons.

B. Magnetization

Bulk magnetization measurements were performed us-
ing a superconducting quantum interference device (SQUID)
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(a)

(c)

(b)

(d)

FIG. 3. Magnetic state evolution as a function of charge doping (x) in Ba2Na1−xCaxOsO6. (a) Magnetic volume fraction extracted from
μSR asymmetry for all doping levels. The magnetic transition temperature is defined as the 90% filling of the magnetic volume and increases
monotonically with increasing Ca doping. (b) Magnetization as a function of applied magnetic field at 2 K. The results of high-temperature
(T � 50 K) Curie-Weiss fittings for magnetic susceptibility measurements in the PM state are shown in the inset. (c) 23Na NMR spectral
linewidth (top) and absolute value of Knight shift (bottom) as a function of doping concentration at various temperatures. (d) Magnetic
phase diagram. Markers denote magnetic transition to the canted AFM and collinear AFM state for zero-field μSR and high-field NMR
measurements. Solid line serves as a guide to the eye. Typical error bars are on the order of a few percent and not shown for clarity in panels
(a)–(c).

magnetometer. Isothermal magnetization measurements as a
function of applied field were performed at 2 K from −70
to 70 kOe. Zero-field and field-cooled magnetic susceptibility
(χ ) measurements were performed from 2 to 400 K under an
applied field of 1000 Oe.

The χ (T ) data in the paramagnetic region fits well a
Curie-Wiess law with addition of a temperature-independent
constant χ0 term. That is, data for all the concentrations is
fitted to the following expression: χ = χ0 + C/(T − 	CW),
with the Curie constant (C) and the Curie-Wiess temperature
(	CW) as fitting parameters. Representative examples of the
resulting (χ − χ0)−1(T ) curves are reported in Fig. 2(b), we
highlight the low-temperature range of the data and include
linear Curie-Weiss (CW) fittings in the PM state (T � 50 K).
The individual CW fittings are shown in Appendix A. This
data and fits were used to extract CW temperature (θCW)
and effective moment per formula unit (μeff ) as described in
Sec. III B and illustrated in the inset to Fig. 4(b).

C. NMR

NMR measurements were performed using high homo-
geneity superconducting magnets at Brown University, and
the National High Magnetic Field Laboratory in Tallahassee,

FL for magnetic fields exceeding 9 T. Temperature con-
trol was provided by 4He variable temperature inserts. 23Na
NMR data ware collected using state-of-the-art, laboratory-
made NMR spectrometers from the sum of spin-echo Fourier
transforms recorded at constant frequency intervals. Pulse
sequences of the form (π/2 − τ − π/2) were used and none
of the presented NMR observables depend on the duration of
time interval τ .

23Na NMR is a powerful local probe of both the elec-
tronic spin polarization (local magnetism), via the hyperfine
coupling between electronic magnetic moments and the 23Na
nuclear spin I = 3/2, and the charge distribution (orbital
order and lattice symmetry), via the quadrupolar interac-
tion between the electric field gradient (EFG) and the 23Na
quadrupole moment Q [13,51]. They affect both the first and
second moments of the frequency distribution, i.e., the NMR
spectra.

The Knight shift is defined as

Ki = (ωi − ω0)/ω0,

where ω0 = 23γ ·H0, where 23γ = 11.2625 MHz/T and H0

is the externally applied magnetic field, and ωi is obtained
from the first moment and/or peak position of the NMR
spectral lines. This equation forms the general definition of
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(a)

(b)

(c) (d)

(e)

FIG. 4. Doping evolution of the staggered moment in the low-temperature magnetic state. (a) Schematic of the spin model used to fit the
NMR observables. Different colors of the arrows denote different spin environments at the Os sites. The two planes with distinctly oriented
moments from sublattice A and B are shown in different shades. (b) Schematic of the canted spin arrangement by angle φ with respect to
the [110] direction in the XY plane. (c) Simulated and measured NMR spectra linewidth and Knight shift at T = 1.4 K and H = 11 T as a
function of Ca doping x in Ba2Na1−xCaxOsO6. (d) Simulated evolution of the staggered moment, defined as the projection of moments from
two sublattices, A and B, along the applied field, as a function of doping in the magnetic state. The Gaussian blur, used to properly account
for magnetic broadening, of simulated spectra is shown in the inset. The blur increases abruptly for x = 0.9. This might be related to the
increased inhomogeneity of the local magnetic field environment at the Na nuclei site. Details of this simulation can be found in Sec. II D and
Appendix D. (e) Simulated evolution of the canted angle, defined as the angle between the sublattice FM spin orientation and the [110] easy
axis, as a function of doping in the magnetically ordered state. Typical error bars are on the order of a few percent and not shown for clarity.

the NMR shift K in terms of the observed NMR frequency,
ωi ≡ γ H0(1 + K ), where K ≡ Hloc/H0 is the shift. Therefore,
K is a measure of the relative strength of the component of
the local magnetic field (Hloc) parallel to the applied magnetic
field, H0. In the more general case where the shift varies as a
function of the orientation of H0 (anisotropic shift), the scalar
K is promoted to a second-rank tensor K and the expression
for the observed NMR frequency becomes [54]

ωi = γ H0(1 + ĥ · K · ĥ), (4)

where ĥ = H0/H0 is a unit vector in the direction of the
applied magnetic field.

When the quadrupole interaction is taken into account,
the observed NMR frequency becomes ωi = γ (1 + K )H0 +
ωQ(m − 1/2)(3 cos2 θQ − 1 + η sin2 θQ cos 2ϕQ) up to sec-
ond order in perturbation theory [13,51,54]. The second term
accounts for the quadrupole interaction for each m ↔ m ± 1
transition and can be used to deduce the quadrupole parame-
ters when the principal axes of the EFG tensor coincide with
those of the crystal, as in the case of Ba2NaOsO6 [13]. Here,
θQ and ϕQ are the angles between the applied field and the
principal axes of the electric field gradient (EFG) defined
so that |VZZ | � |VXX | � |VYY | and eq ≡ VZZ . The asymmetry
parameter η is set as η ≡ (VXX − VYY )/VZZ . The quadrupolar
frequency equals to ωQ = 3e2qQ/(h̄2I (2I − 1)), where Q
and q are the nuclear and electronic quadrupole moments.

To relate the quadrupolar interaction effect to the observed
NMR frequency, we introduce the quadrupolar splitting tensor
W , such that �ω = ∑

α Wα ĥ2
α in the coordinate system Oxyz,

where W is diagonal. Here Oxyz is defined by the crystalline
axis of the cubic perovskite unit cell [51], α = {x, y, z}, and ĥ
is the unit vector along the applied field.

In the presence of the anisotropic shift and quadrupolar
interactions, the full expression for the observed NMR fre-
quency becomes

ωi = γ H0(1 + ĥ · K · ĥ + W · ĥ2). (5)

This most general expression is then used to extract the rel-
ative strength of the components of the local magnetic field
(Hloc) projected along the applied magnetic field direction
from the measurements of the Knight shift.

D. Calculation of NMR spectra below TN

In the magnetically ordered phase, we model the local
magnetic field at a Na site as Hloc = ĥ · ∑

i Ai · �Si, where ĥ is
a unit vector in the applied field direction, Ai is the hyperfine
coupling tensor with the ith nearest-neighbour Os atom, and
�Si is its local spin moments. We note that contributions from
dipolar effects are relatively small and are thus neglected. By
performing a full lattice sum, we calculate the local fields
projected in the direction of the applied field at the Na sites for
the entire single crystal. The corresponding NMR spectra is a
histogram of these local fields. The powder spectrum is then
obtained by rotating the ĥ over the solid angle and integrat-
ing the results (see Appendix D). The diagonal components
of the hyperfine tensor are optimized based on the hyper-
fine coupling values obtained from the NMR Knight shift
and magnetic susceptibility measurements (see Appendix B),
while the symmetry of the hyperfine tensor is assumed to
be the same as that found in the single crystal Ba2NaOsO6

[13]. The quadrupolar broadening effects are accounted for
utilizing EFG parameters determined from the intermediate
temperature powder spectrum simulation (Appendix D).
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E. Determination of transition temperatures

The transition temperature (TN ) from the PM to low-
temperature magnetically ordered state was determined by
examining the magnetic volume fraction Vmag from zero-field
μSR, and in finite fields from the temperature dependence of
the NMR observables. That is, T μ

N is delineated as a temper-
ature at which Vmag exceeds 90%. From NMR analysis, TN is
defined as the onset temperature of a significant drop in the
Knight shift associated with the formation of the AF ordering.
Such TN is consistent with the one determined from the peak
of the NMR relaxation rate (not shown), induced by critical
fluctuations when approaching a transition into a long-range
ordered magnetic state as a function of temperature.

The onset temperature for the detectable breaking of lo-
cal cubic symmetry, TSB, was identified by the bifurcation
in 1/|K| vs T between the shifts defined relative to ωi, cor-
responding to the peak position (i = pp) and first moment
(i = f m). We point out that TSB does not denote true phase
transition temperature, but it rather refers to the tempera-
ture below which magnitude of local distortions becomes
detectable (i.e., static within the measurement time window
of �1 µs) by our NMR experiments. Moreover, the extension
of the room temperature x-ray absorption fine structure (EX-
AFS) investigation of local structure evolution with doping
Ref. [23] to low temperatures in the BLPS phase, as identified
by NMR, found no evidence of the breaking of the local cubic
symmetry at the Na site. Therefore, distortions reported here
are below sensitivity limit for x-ray absorption spectroscopy
reported in Ref. [23].

III. RESULTS

We now describe the main findings of our systematic study
of Ba2Na1−xCaxOsO6 through the partial heterovalent substi-
tution of monovalent Na with divalent Ca for 0 � x < 1, per-
formed to better understand the effects of doping and to elu-
cidate the competing interactions that drive distinct magnetic
ground states utilizing muon spin relaxation (μSR), nuclear
magnetic resonance (NMR), and magnetization measure-
ments. We find that the insulating state persists at all doping
concentrations despite the injection of electrons and an evo-
lution into the AFM state. This finding is based on thorough
examination of the response of the NMR resonant circuit.

A. Magnetic state–μSR magnetic volume fraction

First, we consider the evolution of the magnetic ground
state of Ba2Na1−xCaxOsO6 as a function of the Na/Ca sub-
stitution (0 � x � 1) as probed by zero-field muon spin
relaxation (ZF-μSR) measurements. In the absence of an
external field (H = 0 T), the spin I = 1/2 muon implanted
in the sample precesses around the spontaneous local mag-
netic field arising from the magnetically ordered state at the
muon site. The muon precessions are reflected in damped
oscillations of the muon asymmetry decay, probing the frac-
tion of precessing muons, which in turn is proportional
to the magnetic volume, as described in Sec. II A. Our
ZF-μSR asymmetry measurements for the end members x =
0 and 1 are in agreement with those previously reported in
Refs. [42,48]. In Fig. 3(a), we plot the temperature evolu-

tion of the magnetic volume fraction Vmag as a function of
doping. We find that samples of all concentrations display a
magnetic transition as the volume fraction approaches 100%
in the low-temperature limit. The transition temperature into
a magnetically ordered state T μ

N defined to be at Vmag = 90%,
grows monotonically from approximately T = 5 K to 40 K
as increasing doping induces a configuration change from the
5d1 to the 5d2 Ref. [23], as illustrated in Fig. 3(d).

B. Magnetic state–magnetization

We have also performed magnetization measurements to
get a better insight into the nature of the magnetic tran-
sitions observed through ZF-μSR. In Fig. 3(b), we plot
magnetization curves as a function of an applied magnetic
field for T = 2 K. The x = 0 sample displays a nonlinear
field dependence with a characteristic S shape and a small
hysteretic behavior consistent with a moderately weak ferro-
magnetic character due to the significant moment canting in
the cAFM phase. This is in agreement with the magnetization
behavior observed in Ba2NaOsO6 single crystals [43]. This
hysteretic behavior is rapidly concealed with charge dop-
ing and is effectively undetectable for doping exceeding x ∼
0.1. Magnetic susceptibility measurements were performed
as a function of temperature at H = 0.1 T for all samples.
As described in Sec. II B, the resulting magnetic suscep-
tibility [χ (T )] in the high-temperature paramagnetic (PM)
region fits well to a Curie-Weiss (CW) function plus a small
temperature-independent contribution (Fig. 2). The resulting
CW temperature (θCW) and effective moment per formula
(μeff ) are displayed in the inset to Fig. 3(b). The values of
the end members are in very good agreement with those
previously reported for Ba2Na1−xCaxOsO6 at x = 0 (μeff =
0.6 μB) and x = 1 (μeff = 1.6 μB) [41,43,46,47]. Further-
more, the extracted effective moments increase smoothly as
the system evolves from the 5d1 to 5d2 configuration, while
θCW becomes more negative. The extracted effective moment
for both configurations is significantly suppressed from the
theoretical value expected if SOC were negligible (μeff =
1.73 μB and μeff = 2.83 μB for 5d1 to 5d2 configurations,
respectively) and is closer to the expected moments in the in-
finite SOC limit (μeff = 0 μB and μeff = 1.25 μB for 5d1 and
5d2 configurations, respectively) [6,7,55]. The experimentally
determined values of μeff being significantly reduced from
those expected for negligible SOC limit indicates the presence
of strong SOC (in agreement with predicted SOC coupling
lambda ∼0.3 eV), while their being larger than those in the
limit of infinite SOC can be attributed to the hybridization of
Os d and oxygen p orbitals, with extra moments coming from
the p orbitals, in agreement with predictions of Ref. [56]. The
most likely origin of the observed effective moment increase
with doping (5d1 → 5d2) is the enhancement of the spin
quantum number. This is because the spin (S) is predicted
to increase from S = 1/2 to S = 1 as doping changes from
x = 0 → x = 1 [56].

C. Magnetic state–NMR

In order to obtain insight into the microscopic nature of the
magnetically ordered state throughout the doping evolution,
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we performed detailed analysis of the 23Na NMR spectra fol-
lowing the methods outlined in Secs. II C and II D. That is, we
analyzed how the spectral shape changes in the magnetically
ordered state, i.e., measured below TN , as a function of the
Ca content x. In Fig. 3(c), we plot the absolute value of the
Knight shift, deduced from first moment of the NMR spectra
(Fig. 11 in Appendix D), and the linewidth of the spectra as
a function of x. The magnitude of the Knight shift rapidly
decreases on introduction of Ca dopants (x > 0) and remains
nearly constant for higher doping (x � 0.1). The absolute
value of the shift is a measure of the local magnetic moment
projected along the external magnetic field direction. In the
magnetically ordered canted state, the shift is proportional
to the projection of the noncompensated magnetic moment
along the applied magnetic field, as was demonstrated by 23Na
NMR measurements on Ba2NaOsO6 single crystals [13,44].
Therefore, the observed abrupt decrease of the shift upon the
introduction of dopants indicates that the addition of charge
effectively quenches the FM component, while further doping
(x � 0.1) leads to a more uniform distribution of the projected
moments. Furthermore upon the introduction of dopants (x >

0), the linewidth, which reflects the distribution of the mag-
netic fields projected along the applied magnetic field, exhibits
the same abrupt decrease as the NMR shift, in agreement with
the suppression of the canted nature of the magnetic order
upon charge doping. In the collinear AFM state, the spectral
linewidth is qualitatively proportional to the size of the local
ordered magnetic moment. Thus, the smooth increase of the
linewidth observed for x > 0.1 in Fig. 3(c), indicates a pro-
gressive rise of the ordered magnetic moment as the charge
concentration approaches x = 1, i.e., the 5d2 configuration
(full quantitative analysis of the linewidth is presented in the
next section).

We point out that one would naively expect that the
linewidth either to monotonically increase with doping since
it introduces inhomogeneity in the crystal or to display a
maximum at 50% where the chemical disorder is maximized.
Neither of these possibilities accounts for our observations
here, because the NMR linewidth reflects intrinsic inhomo-
geneities of the magnetic ground state. Both the magnetization
and the low-temperature NMR measurements are consistent
with a picture where the canted magnetic state rapidly evolves
into the collinear AFM phase upon the introduction of charge
and that the ordered magnetic moment increases as a function
of Ca doping.

IV. DISCUSSIONS

A. Microscopic nature of the magnetic state

To investigate the direct effect of doping on the nature
of the staggered magnetic moments, i.e., a two-sublattice
canted antiferromagnetic order observed in Ba2NaOsO6 sin-
gle crystal [13], we have simulated the powder spectrum
corresponding to the two sublattice cAFM order identified in
Ref. [13] (Sec. II D and Appendix D). The input parameters
for the simulations include the electronic spin moment (�S) and
the hyperfine coupling tensor (A). For each Ca doping concen-
tration, we fix the value of �S to be that of the effective moment
(�S = μeff ) deduced from susceptibility measurements [the

inset to Fig. 3(b)]. Simulated spectra are then fitted to the
observed ones with canting angle, and consequently staggered
moment, as a fitting parameter. Here, the canting angle is that
between the sublattice FM spin orientation and the [110] easy
axis, while the staggered moment refers to the projection of
the moments from the two sublattices, A and B, along the ap-
plied field direction. The simulation results are summarized in
Fig. 4. We find that both, the canting angle and the staggered
moment, change abruptly upon charge doping for x > 0.1. For
x = 0, we obtain the best fit for a canting angle of 68◦, con-
sistent with that reported for pure Ba2NaOsO6 single crystal
[13]. For x > 0.1, the canting angle rapidly approaches 90◦,
the value associated with a collinear AFM state [see Fig. 4(d)].
The deduced canting angles and staggered moments serve
as input parameters to calculate the doping evolution of the
Knight shift and linewidth associated with the local spin ar-
rangement depicted in Fig. 4(a). The calculated evolution of
the shift and the linewidth is in an excellent agreement with
observations, as shown in Fig. 4(c). As x increases, the Knight
shift decreases as a direct consequence of the increase of the
canting angle, as depicted in Fig. 4(b). On the other hand, the
linewidth decrease with increasing x is associated with the
weakening of the off-diagonal components of the hyperfine
coupling tensor, for the canting angle ∼90◦. Furthermore,
in the inset to Fig. 4(d) we plot the Gaussian blur, which
is used to account for the inhomogeneous magnetic broad-
ening of the measured spectra, and its abrupt increase with
doping approaching x → 1 indicates that injected charge is
inhomogeneously distributed. More importantly, such abrupt
increase in the linewidth close to pure 5d2 limit is predicted
in the recent comprehensive theoretical study of effects of
the impurity doping in the cubic double perovskites [57].
While the ab initio calculations indicate robustness of the ideal
Ba2CaOsO6 against spontaneous lattice distortions, partial
substitution of Ca2+ with Na+ induce local strains, which
break point group symmetry around neighboring Os sites.
These local strains break the degeneracy of the T2g orbitals
at the Os sites. While local/global strains can occur due to
quadrupole order, they can also be present simply as impu-
rity induced strain fields. Then at lower temperature, when
octupolar order sets in, deviations from octahedral symmetry
induce weak dipolar moments whose magnitude precisely
tracks the octupolar order parameter. The direction of these
dipole moments, being determined by the random strain fields
is, however, still random, which causes the dramatic broaden-
ing of the spectrum. The observed increase of the linewidth,
and Gaussian blur as x → 1 can then be explained by strain
field induced multipolar order predicted in Ref. [57]. Never-
theless, we cannot identify the exact nature, ferro-octupolar
vs antiferro-quadrupolar, of the multipolar order as x → 1.
This is because the decay of the Knight shift and concurrent
increase of the linewidth might be alternatively explained
by the appearance of octupoles substituting the canted ferro-
magnetic order. These octupolar moments generate spatially
nonuniform rapidly decaying magnetic field. Inhomogeneous
octupolar fields could in turn cause visible line broadening.
At the same time, since this multipolar phase is a ferro-
octupolar phase, this field will be a sum of contributions from
all neighboring sites. Since the precise spatial variation and
these octupolar moment is quantitatively unknown, we are not
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(a) (b) (c)

(d) (e) (f)

FIG. 5. NMR spectral evidence of broken local point symmetry. [(a)–(c)] Temperature evolution of 23Na spectra for (a) x = 0, (b) x =
0.125, and (c) x = 0.9. [(d)–(f)] 23Na powder NMR spectrum simulation results at H = 11 T for (d) x = 0, (e) x = 0.125, and (f) x = 0.9 in
the BLPS phase.

able to confidently identify the exact nature of the multipolar
order.

B. Broken local point symmetry (BLPS)

Next, we investigate the effect of charge doping on the
BLPS phase identified in Ref. [13] through investigation of
the NMR linewidth broadening, as illustrated in Figures 5(a)–
5(c). In this paper, the onset temperature of the visible broken
local point symmetry is determined from the NMR Knight
shift as described in Sec. II E. To verify consistency of our
two approaches employed to identify BLPS and to determine
the nature of the local crystal symmetry, we then proceed to
analyze NMR powder spectral shapes at temperatures above
the transition to the magnetically ordered state.

This subtle symmetry breaking has eluded previous diffrac-
tion measurements [43], but is well reflected in the distortion
of the NMR spectra by the unbalanced spectral weight dis-
tributed towards a lower frequency with respect to its main
peak associated with the cubic symmetry (see Fig. 5). A direct
phenomenological way to detect and estimate the distortion
of the spectra is by comparing the temperature evolution of
the frequency of the peak position of the spectra to the first
moment of the frequency distributions. In Fig. 6, we display
representative data sets for the comparison of the Knight shift
obtained relative to the frequency ωi of the first moment
(i = f m) and peak (i = pp) of our NMR spectral lines (see
Sec. II C). The clear bifurcation in 1/|K| between the shift
obtained by using the peak position and first moment marks

FIG. 6. NMR shift evidence of broken local point symmetry.
Representative NMR Knight shift as a function of temperature at
11 T and 7 T. Arrows indicate the corresponding structural TSB and
magnetic TN transition temperatures. x = 0.9 (Ca = 90%) data is
vertically offset for presentation clarity. Typical error bars are on the
order of a few percent and not shown for clarity.
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the structural phase transition to the BLPS phase TSB. Upon
further cooling, a sharp drop of 1/|K| is observed, denoting
the transition temperature TN into the magnetic state (see
Sec. II E). The magnetic transition temperature TN obtained
from the 1/|K pp| drop, is consistent with that determined
from the peak of the NMR relaxation rate (not shown) and
from ZF-muSR measurements [Fig. 3(d)]. These observations
indicate that below TN , an AF order is formed. In an AF
ordered state, net projected moment along the applied field
is significantly reduced, and vanishes in the case of collinear
AF order, resulting in the observed drop in the Knight shift.

C. Nature of the broken symmetry

In Fig. 5, we plot 23Na NMR spectra of Ba2Na1−xCaxOsO6

for x = 0 [Fig. 5(a)]; x = 0.125 [Fig. 5(b)] at 11 T; and
x = 0.9 [Fig. 5(c)] at 7 T. The cubic paramagnetic (PM)
state is characterized by the narrow symmetric spectra, as
expected in the highly symmetric cubic PM phase. The BLPS
arises in the intermediate temperature range and is marked
by asymmetric spectra with a more pronounced tail at lower
frequencies. At low temperatures, in the magnetically ordered
phase, the BLPS phase coexists with magnetism revealed by
asymmetry of the NMR spectra. As elaborated in the Sec. II C
and Appendix II C, a cubic local environment at the nuclear
site must lead to a symmetric spectrum, while only noncubic
local symmetries, such as tetragonal or orthorhombic, can
generate asymmetric lineshapes. We note that the NMR spec-
tra in the high-temperature PM phase are both narrow and
symmetric for all concentrations investigated in this paper.
This observation, excludes the possibility that local deviations
of cubic symmetry observed at lower temperature are trivial
consequence of the Ca/Na alloying, as such effect should be
detectable at higher temperatures as well.

We have performed detailed simulations of the 23Na NMR
powder pattern spectra in the presence of a quadrupolar inter-
action with the electric field gradient (EFG) and an anisotropic
Knight shift K (see Sec. II C and Appendix II C), following
the notation of Ref. [58]. We find that above TN , in the PM and
BLPS phases, the resulting powder NMR spectra must reflect
the symmetry of the K and EFG tensors. Therefore, the shape
of the NMR spectra provides precise information about any
deviation from the cubic symmetry. Indeed, our systematic
analysis of the measured spectra demonstrates that the best
fits can only be achieved by using orthorhombic distortions, in
agreement with findings in Ba2NaOsO6 single crystals [13].

In Figs. 5(b) and 5(c) we illustrate representative results
of our 23Na NMR powder spectra simulations in the BLPS
phase (details of the simulation are given in Appendix II C).
By fitting the powder spectra, we deduce that the EFG and K
tensors are orthorhombic and collinear to one another. These
findings reveal that the main signature of the BLPS phase is
not only the cubic symmetry breaking, but also the concurrent
development of a collinear K anisotropy, indicating that the
BLPS is a consequence of a multipolar order formation. That
is, the deduced K anisotropy implies that the BLPS does not
consist of a simple structural distortion but rather involves
distortions of magnetic super-exchange paths, plausibly in-
duced by a formation of a multipolar ordering. Furthermore,
this is compatible with the fact that deviations of the magnetic

FIG. 7. Phase diagram of Ba2Na1−xCaxOsO6. Solid markers de-
note the magnetic transition to the canted AFM and collinear AFM
state for zero-field μSR and high-field NMR measurements. Open
markers denote structural transitions into the BLPS phase. Solid lines
serve as a guide to the eye.

susceptibility from the Curie-Weiss behavior are observed at
temperatures well above TN . That is, these deviations occur
at temperatures ≈ TSB, as depicted in Fig. 8 in Appendix A.
Therefore, the BLPS is most likely an anisotropic multipolar
phase.

D. Phase diagram

Both TSB and TN obtained from 23Na NMR at 7 T and 11 T
are displayed in the temperature versus doping phase diagram
plotted in Fig. 7. The results show that the BLPS phase, a
precursor to the magnetic state, is an intrinsic characteristic
of these Mott-insulating metal oxides and persists to higher
temperature, up to about 80 K, when approaching the 5d2

configuration. This orthorhombic local point distortion of the
octahedra is a clear signature that these materials are intrinsi-
cally dominated by low-temperature anisotropic spin-lattice
interactions, an essential ingredient to be included in any
microscopic quantum theory of Dirac-Mott insulators.

V. CONCLUSIONS

We have performed a microscopic investigation of the
transformation of a 5d1 double perovskite Mott insulator
into a 5d2 configuration by charge doping. We observed
that the system remains insulating while the NMR linewidth
(Gaussian blur) increase as doping approaches x → 1. These
findings indicate that the injected charges are not uni-
formly distributed into the 5d1 double perovskite, rather
they are inhomogeneously trapped, most likely on the Os
sites that convert the system to 5d2 configuration. The
formation of polarons, quasiparticles formed by the cou-
pling of excess charge with ionic vibrations, has been
recently proposed as another plausible mechanism for dopant
trapping [24,59].

Our magnetization measurements reveal that AF exchange
interactions become enhanced as charge doping alters its con-
figuration from 5d1 → 5d2. Furthermore, detailed analysis of
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the NMR shift and lineshapes in the magnetically ordered
state reveals that magnetism coexists with the BLPS phase,
and that it evolves from a canted AFM state to a collinear AF
for dopant levels exceeding (x > 0.1). In 5d1 Ba2NaOsO6,
a cAFM order was identified to arise from the BLPS, as a
result of the interplay of electron correlations and the degree
of Jahn-Teller distortions [53]. Therefore, the breaking of
cubic symmetry in Ba2NaOsO6 destabilizes the collinear AF
state in favor of the cAFM state. Our finding that a collinear
AF order coexists with the BLPS for x > 0.1 suggests that
the theoretical results of Ref. [53] need to be extended to
include effects of enhanced electron correlations, SOC, and
Jahn-Teller interaction with doping. Therefore, our results
show that charge doping profoundly alters the interplay be-
tween spin-exchange interactions, Jahn-Teller distortions, and
electronic correlations as the system evolves away from the
5d1 configuration, and provides pertinent constraints to guide
the development of microscopic models of Mott insulators
with SOC.

Through a comprehensive analysis of the temperature de-
pendence of the NMR shift and lineshapes, we established that
a BLPS phase occupies an increasing portion of the (H−T )
phase diagram with increased doping. This finding is seem-
ingly in contradiction with those in Refs. [21,47] reporting
a single transition into Néel order at T ∗ ≈ 50 K, and no
evidence of deviations from cubic symmetry in Ba2CaOsO6.
It was proposed that these rather unusual results below
T ∗ in [21] may be reconciled by the emergence of time-
reversal symmetry breaking, ferro-octupolar order [16,22,49].
Although the diffraction data in [21] is high intensity, it is not
obvious that its resolution was sufficient to detect a small de-
viations from cubic symmetry like those reported here and/or
seen in Ba2MgReO6 [19]. Improved resolution in [47] might
still not be good enough to detect a deviation from cubic sym-
metry. Moreover, it is more difficult to reconcile the inference
of cubic symmetry from high-resolution synchrotron powder
XRD data collected on Ba2CaOsO6 at 20 K [21]. This finding
suggests that the local distortions are not coherent over the
diffraction length scale. We cannot undeniably exclude the
other more trivial explanations that include the possibility that
the distortions are present in the x = 0.9 sample but not in the
x = 1.0 (Ba2CaOsO6) one, and/or they are so subtle that even
in high-resolution synchrotron data they remain undetectable.
Nevertheless, if the local static deviations from cubic symme-
try in the BLPS, as reported here, are not sufficiently coherent
to drive a long-range distortion observable in scattering exper-
iments, then an antiferro order of active quadrupoles within
the eg doublet identified in [50] can be possibly identified as
a competing phase. That is, if the distortions inherent to the
BLPS phase are present, then the quadrupolar AFM phase is
more stable. This is in contrast with the case when the system
preserves cubic symmetry and acquires a octupolar-FM order.
Since these two multipolar phases are very close in energy,
it could be that small perturbations induce tiny local distor-
tions and promote the onset of the quadrupolar AFM. Even
though, a dynamical Jahn-Teller distortions could exist in the
ferro-octupolar phase, our current NMR measurements were
designed to probe static BLPS effects and as such support
quadrupolar AFM scenario. Future measurements sensitive
to the dynamical effects and performed on x = 1 pure com-

pounds will be instrumental in determination of the precise
nature of the multipolar order.

Our microscopic data clearly shows that in the limit of x →
1, the system exhibits local deviations from cubic symmetry
below TSB ∼ 80 K, while a Néel AF order develops below
TN ∼ 40 K, with a staggered moment of 0.05 μB. Therefore,
our observations of the broken local cubic symmetry indicate
that the BLPS phase is driven by a formation of a mul-
tipolar order [57], most likely of the antiferro-quadrupolar
type [18,50], because ferro-octupolar order preserves cu-
bic symmetry. The conclusion that the BLPS phase is of
antiferro-quadrupolar type is supported by two additional
findings. Firstly, the BLPS phase is characterized by an
anisotropic NMR shift tensor in addition to orthorhombic
local distortions. Secondly, the alluded inhomogeneous na-
ture of the charge doping promotes quadrupolar four-spin
exchange interactions, making quadrupolar phase more sta-
ble, and implying that the onset of the BLPS-quadrupolar
phase should occur at a higher temperature as doping in-
creases, consistent with presented observations. Our NMR
measurements indicate that local distortions, induced by the
antiferro-quadrupolar order, are inhomogeneous, i.e., consists
of areas of distortions of different magnitude. Such local dis-
tortions, seen by NMR, do not coherently order and give rise
to diffraction peaks here in the way they do in the related 5d1

compound, Ba2MgReO6 [19].
One could argue that ferro-octupolar order is not ob-

served in our doped samples simply because inhomogeneous
dopants can induce local strain, consequently leading to a
breaking of the local cubic symmetry. However, local strain
is predicted to suppress the octupolar ordering temperature
because it induces a transverse field in the octupolar or-
dering direction, which promotes quantum fluctuations [22],
and thus is in contradiction with phase diagram presented
in Fig. 7. Therefore, our NMR findings support emergence
of an antiferro-quadrupolar order in the doped 5d1 → 5d2

double perovskites. The quadrupolar phase most likely arises
as lattice distortions amplify the quadrupolar interactions via
Jahn-Teller interactions.

Aforementioned recent theoretical study of the impurity
effects in the pure 5d2 limit in Ref. [57], provides an alter-
native explanation on the nature of the multipolar order based
on the analysis of our NMR data for x > 0.9. Precisely, it is
deduced that our data indicates that multipolar order estab-
lished in the vicinity of the pure 5d2 limit is an octupolar
one. That is, Na dopants cluster into regions of pairs (or
more) of neighboring Na impurities, which lowers the point
group symmetry and induces local quadrupoles. These Na
clusters induce strain on the local quadrupoles. This strain
in turn breaks time-reversal symmetry inducing octuples with
finite dipolar moments. At higher temperatures these octuples
form short-range order as Na cluster that induce octuples are
far apart. On lowering the temperature, long-range octupolar
order with LRO magnetism emerges from ordering of the
local dipolar moment on octupoles. This picture naturally
explains our observation that BLPS onsets at higher temper-
ature than the LRO magnetism, which at first glance might
seem in contradiction with presence of the octupolar order
[5,16,60]. However, such inhomogeneous form of magnetism
for x > 0.9, arising from local nonuniform multipolar order,
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can arise not only from impurity induced strains but from
other intricate effects of spin-orbit entanglement such as those
discussed in Ref. [24,53]. As alluded earlier, our current paper
implies that the nature of the multipolar order is most likely of
the antiferro-quadrupolar type for x < 1. However, we cannot
exclude the possibility that the ferro-octupolar phase onsets as
x → 1. This issue will be addressed in our future work.
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APPENDIX A: CURIE-WEISS BEHAVIOR

Here we plot the individual fits of the magnetic susceptibil-
ity (see Sec. II B) to the Curie-Weiss (CW) linear temperature
behavior. The individual CW fittings are shown in red in
Fig. 8 for (a) x = 0, (b) x = 0.25, (c) x = 0.5, (d) x = 0.9,
and (e) x = 1.0. The extracted CW temperature (θCW) and
effective moment per formula (μeff ) for the corresponding fits
are displayed in the inset of Fig. 3(b).

APPENDIX B: HYPERFINE TENSOR

The diagonal components of the hyperfine coupling tensor
were determined in the PM phase from Clogston-Jaccarino
plots of all of the doping concentrations, as shown in Fig. 9(b).
For the off-diagonal values, the symmetry of the tensor is
taken to be that obtained for the BNOO single crystal in Ref.
[13]. The tensor form was found to be given by

A =
⎛
⎝ aa ab ac

−ab bb bc
ac bc cc

⎞
⎠. (B1)

APPENDIX C: SIMULATION OF THE NMR SPECTRA

Here, we discuss details of the χ2 fit of the measured 23Na
NMR powder spectra to the simulated powder pattern spectra
for nuclear spin I = 3/2 subject to the quadrupolar interaction
and an anisotropic Knight shift. The powder average was com-
puted numerically by a modified program based on a Fortran
subroutine written by D. W. Alderman [61].

Model. The lineshape is modeled by three distinct compo-
nents:

(1) An anisotropic Knight shift tensor K̂ with arbitrary
orientation relative to the crystal axes. The total magnetic field
at the nucleus is written as

�Hnuc = �H0 + δ �Hnuc = (1 + K̂ )( �H0). (C1)

For an orientation defined by the unit vector u = �H0/H0, the
effective shift of the resonance line Keff , defined as Hnuc =
(1 + Keff )H0, is calculated to first order as Keff = u · K̂u. The
symmetric tensor K̂ is parameterized by its principal compo-
nents, Kx, Ky, Kz, and three Euler angles, φ, θ , ψ , defining the
orientation of the principal axes of K̂ relative to those of the
EFG (i.e., the crystal reference frame).

(2) The quadrupolar interaction is expressed as

HQ = hνQ

6

[
3I2

z − I (I + 1) + η

2
(I2

+ + I2
−)

]
(C2)

in the crystal reference frame. Here νQ (which coincides with
the zero-field NQR frequency only if η = 0) is a coupling
parameter in units of frequency. HQ is treated as a perturbation
of the dominant Zeeman interaction, HZ = γ (1 + K̂ ) �H0, and
the satellite lines are calculated to second order in perturbation
theory.

(3) Incoherent Gaussian line broadening σ calculated by
the convolution with a Gaussian, which reflects magnetic in-
homogeneities (i.e., the inhomogeneity of K̂). Quadrupolar
inhomogeneities can be modeled in principle by a Gaussian
broadening of only the satellite lines (since the central 1/2 ↔
−1/2 transition is unaffected by HQ to first order). However,
we determined that this quadrupolar inhomogeneous broaden-
ing is negligible in this case. Nevertheless, we label this kind
of line broadening as “incoherent” since the powder average
of the interactions is calculated first and then the resulting
spectra are broadened (hence, any possible correlation be-
tween local values of K and νQ can be/is neglected).

Fit. In the fit of the data, K̂ is conveniently represented by
its isotropic component, Kiso = 1/3TrK̂ , and two independent
traceless components, K̂cyl and K̂rhom. The isotropic Zeeman
frequency νiso = γ /2π (1 + Kiso)H is determined directly as
a fitting parameter, so Kiso can be extracted if the reference
frequency 23ν of 23Na is known in the given applied field. The
other components, Kcyl and Krhom, are defined as follows:

Kx = −1/2Kcyl + 1/2Krhom + Kiso,

Ky = −1/2Kcyl − 1/2Krhom + Kiso, (C3)

Kz = Kcyl + Kiso.

The fitting consistently returned best-fit Euler angles φ =
0, θ = 0, ψ = 0, which implies that the Knight shift princi-
pal axes coincide with those of EFG. The best-fit simulated
NMR spectra in the intermediate temperature range (in the
BLPS state for TN < TSB) are displayed in Figs. 5(d)–5(f).
The corresponding fitting parameters are displayed in Table I.
Throughout the entire doping range, the best-fit EFG and K̂
tensors are consistently orthorhombic and collinear to each
other. The inaccuracy of the fit is likely due to inhomo-
geneities in the interaction, which are not properly accounted
for by the model of incoherent broadening.
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(a) (b)

(c)

(e)

(d)

FIG. 8. Curie-Weiss fittings of magnetic susceptibility. The red lines denote the results of Curie-Weiss (CW) fittings for (a) x = 0, (b) x =
0.25, (c) x = 0.5, (d) x = 0.9, and (e) x = 1.0 in the PM state. The extracted CW temperature (θCW) and effective moment per formula unit
(μeff ) are displayed in the inset to Fig. 3(b).

We note that one would naively expect that a 5d2 (Os6+)
distorts in a different way than a 5d1 (Os7+), especially
because the low-temperature NMR data for the x = 0 (signif-
icantly asymmetric) and x = 0.9 (more symmetric) samples
look qualitatively different. However, our detailed analysis
of the spectral shapes indicates that no significant varia-
tion in the EFG is revealed as doping increases from x =
0 (300 kHz) to x = 0.9 (280 KHz). Therefore, local dis-
tortions are orthorhombic and do not change in nature as
a function of doping. It is the asymmetry of the NMR

shift that is significantly suppressed as doping increases
thus leading to overall more symmetric NMR lineshape
for x = 0.9.

APPENDIX D: POWDER NMR SPECTRUM SIMULATION
OF COLLINEAR CANTED AFM MODEL

This simulation is constructed by using a two sublat-
tice spin-staggered pattern (similar to the one used for
Ba2NaOsO6 (BNOO) single crystal in Ref. [13]) and calcu-
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(a)

(b)

FIG. 9. Hyperfine coupling constant determination. (a) 23Na
Clogston-Jaccarino plot with temperature as implicit parameter for
each point. Solid lines denote linear fit to the data, with a fitting
range from the highest temperature available to the magnetic tran-
sition temperature TN for each doping concentration. (b) Hyperfine
coupling constant extracted from linear fits shown in the top figure.

lating the local field distribution at two distinct Na sites when
the sample is oriented at an arbitrary angle (θQ, φQ) relative to
the external field direction, where (θQ, φQ) are the polar angles
between the external field coordinate and the EFG principle
coordinate (which is same as the crystal coordinate for BNOO
since the principle axes of EFG tensor are aligned with the
crystal axes). The local magnetic field at the Na sites are then
calculated according to

Hloc = ĥ ·
∑

i

Ai · Si + ωQ

γ
(m − 1/2)

× (3cos2θQ − 1 + η sin2θQcos2φQ), (D1)

where the first term accounts for the Zeeman and the second
for the quadrupolar interaction. The summation includes the
six nearest-neighbor sites around the Na atoms and the hy-
perfine coupling tensor Ai (in the units of [T/μB]) is same

for all the nearest-neighbor sites with Si being the local spin
moments (in the units of [μB]). The relationship between the
Knight shift tensor K and hyperfine tensor A can be written
as Ki = AiSi/H0. The local fields generated by quadrupolar
effects are then added using fixed EFG parameters obtained
from fitting to the spectra measured in the intermediate tem-
perature range (TN < TSB). The powder sample average was
performed by integrating over the 4π solid angle while vary-
ing the orientation of the applied magnetic field. A random
sampling on the 4π solid angle is done by sampling the polar
angle (θQ, φQ), which satisfies θQ = arccos(1 − 2ζ ) and φQ =
2πη, respectively. Here ζ and η are two numbers randomly
generated between 0 and 1, with a total sampling number of
50 000. The calculated local fields when the external magnetic
field is oriented uniformly in the 4π solid angle are then plot-
ted as a histogram and convoluted with a Gaussian function
to get the final simulated spectrum (in MHz) to compare with
the experimental data.

There are several factors that go into the construction of the
simulated spectrum that are important to obtain the correct
results, such as, the spin arrangement, and the net/effective
moment when the field is at an arbitrary angle relative to
the sample, the hyperfine tensor values, etc. Below are some
detailed description of how these factors are implemented in
the current simulation code.

Spin arrangement pattern. The spin directions for this sim-
ulation are based on the BNOO single crystals in-plane canted
AFM [110] pattern, as shown in Ref. [13], Fig. 4(b). Sub-
lattice A and B are staggered by approximately 67◦ relative
to the easy axis [110] on two neighboring layers. Based on
the diagonal rotation pattern of BNOO, the two sublattices of
spins rotate with the field direction in the same plane while
keeping the same canting angles when the field direction is
rotated from [110] to [001].

Extending to the powder cases, the field dependence of the
spin-sublattice directions is assumed to be the same as in the
case of the BNOO single crystal for the entire 4π solid angle,
not only when the field direction is along the diagonal rotation
directions but also when the field is rotated in the xy plane.
This means that the staggered spins keep the same canting
angle relative to the field direction when they are placed in
different orientations relative to the external field, as shown in
Fig. 10.

Field dependence of net moment. The field dependence
of the net moment on the BNOO, single crystal, Fig. 3 in
Ref. [43], is very important to the fit of the diagonal rota-
tion pattern of the averaged field. Here, the ordered moment
angle dependence along the [001], [111], and [110] high

TABLE I. 23Na powder NMR spectra simulation fitting results.

Ca % T (K) νiso (MHz) νQ (kHz) η σ (kHz) Kcyl (10−3) Krhom (10−3)

0 9 123.6516(6) 301(3) 0.92(2) 41(2) −2.253(14) −0.681(17)
12.5 9 123.7798(9) 282(4) 0.51(3) 49(2) −1.65(3) −0.38(7)
25 11 123.8299(5) 345(2) 1.00(2) 64(1) −2.483(14) −1.29(2)
37.5 15 123.8177(10) 343(3) 0.79(2) 42(2) −2.344(19) −0.83(6)
50 17 123.8031(7) 356(3) 0.658(4) 39(1) −2.389(32) −0.293(11)
90 40 123.8590(2) 279.5(3) 1.00(3) 27.2(5) −1.918(3) −1.252(11)
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FIG. 10. Schematic graph showing the staggered spin model pat-
tern relative to an arbitrary field direction. The red arrow H represents
the direction of external magnetic field. SA and SB represent the spin
moment orientations on the two sublattices. The angles θ and φ refer
to the angles θQ and φQ, which are the polar angles of the field
direction relative to the EFG (and crystal) coordinate.

symmetry axes can be fitted and described numerically by
Mordered = 0.2 μB · α(θ ), where 0.2 μB is the largest ordered
moment when the crystal’s [110] axis is aligned with the
external magnetic field and α(θ ) is the numerically fitted angle
dependence relationship. For the doped powder samples, the
effective moment values are taken from the magnetization
measurements [inset to Fig. 1(b)].

Effective moment values. For the BNOO single crystal,
the effective moment is 0.6 μB, corresponding to three times
its largest ordered moment of 0.2 μB when its [110] axis is
aligned with the external magnetic field. The same is obtained
for the BNOO powder sample. So, the effective moment for
all of the doped samples in the simulation are taken to be the
values shown in the inset to Fig. 1(b) in the main text. These
effective moments are used in combination with the field de-
pendence of the net moment as described in the section above,
meaning that Si = Seff · α(θ ).

Quadrupolar effect. The quadrupolar effect is added to
the two distinct Na sites after obtaining their local field
from Hloc = ∑

i A · �Si. The EFG parameters and principle
axes are fixed, taken from the values shown in Table I. The
corresponding local fields generated from the quadrupolar
splitting are written as δq = 1

2νQ(3cos2θ − 1 + ηsin2θcos2φ),
where θ and φ describe the orientation of the external field rel-
ative to the EFG principle axes. These quadrupolar local fields
are combined with local field generated from the hyperfine
interactions to obtain the local field histogram, i.e., spectra
plotted in Fig. 11.

Results. In Fig. 11 we plot the optimization results for
all doping concentrations. The optimization solver used in
Python is “Nelder-Mead”. Initial conditions are first tuned
manually.

In the plots in Fig. 11, histogram is shown in blue
and the orange line represents the generated spectrum after
convoluted with a Gaussian function. Both the simulated (or-

TABLE II. 23Na powder NMR spectra simulation fitting results
for spectra taken at low temperatures (T = 1.4 K for all x except for
x = 0.25 acquired at T = 4.2 K) in the magnetically ordered state.
φstg represents the staggered angle of the two sublattice spins relative
to the external field direction. σ represents the Gaussian blur. A is
the hyperfine coupling tensor.

x φstg
◦ σ (MHz) A(T/μB )

0 69.8 0.19

⎛
⎝ 0.39 −0.11 −0.14

0.11 0.37 0.15
−0.14 0.15 0.37

⎞
⎠

0.125 85.6 0.25

⎛
⎝ 0.50 −0.05 −0.09

0.05 0.43 0.04
−0.09 0.04 0.47

⎞
⎠

0.25 87.7 0.16

⎛
⎝ 0.39 −0.04 −0.04

0.04 0.28 0.05
−0.04 0.05 0.36

⎞
⎠

0.375 87.5 0.23

⎛
⎝ 0.35 −0.03 −0.04

0.03 0.30 0.04
−0.04 0.04 0.33

⎞
⎠

0.50 88.4 0.27

⎛
⎝ 0.58 −0.03 −0.03

0.03 0.50 0.05
−0.03 0.05 0.51

⎞
⎠

0.90 87.7 0.51

⎛
⎝ 0.36 −0.03 −0.04

0.03 0.33 0.05
−0.04 0.05 0.33

⎞
⎠

ange) and data/measured spectrum (green) are normalized by
their amplitude.

The simulation results show that the staggered angle
changes from ∼68◦ to ∼90◦ with increased Ca doping.
This could explain the doping dependence on the Knight
shift.

The Gaussian blur, as determined by fitting, significantly
increases for x > 0.2 to allow for a good fit to the wide
measured linewidth. However, the calculated local field dis-
tribution, represented by the histogram only, does not show
the same significant increase. This indicates that there might
be other sources of the inhomogeneous broadening, besides
that arising from the two sublattice magnetic state, to account
for the large linewidth for x > 0.2.

Since the current model treats the effective moments for
all of the doping samples as fixed input parameters, the cal-
culated doping evolution of the Knight shift and the linewidth
are compatible with that of the effective moments. For 0 <

x < 0.125, the decrease in the Knight shift is because of the
staggered angle changes from ∼67◦ to ∼85◦. The decrease
in the linewidth can be accounted for by the decrease of
the off-diagonal components of the their hyperfine coupling
tensor, even though the effective moments increase in this
region. Above x = 0.25 doping, the off-diagonal components
are about constant up to x > 0.9, and the increase in the
linewidth in this region comes from the increase of the ef-
fective moments.
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(a)

(c)

(e)

(b)

(d)

(f)

FIG. 11. 23Na powder NMR spectra simulation results for Ba2Na(1−x)CaxOsO6. Spectra shown at H = 11 T in the low-temperature
magnetic phase for (a) x = 0, (b) x = 0.125, (c) x = 0.25, (d) x = 0.375, (e) x = 0.50, and (f) x = 0.90. Green lines represent measured
NMR spectra, blue lines represent simulated histogram and orange lines represent fitted spectra. The simulation fit parameters of these NMR
spectra are displayed in Table II.
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